Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Business Impact

Attractive Shapes

Materials: Magnetically controlled metal could yield better machine parts.

Materials scientists have long played with “shape memory alloys,” metals that shift between one shape and another when heated or cooled to just the right temperature. But so far, real-world applications have been limited, because controlling the alloy’s shape with temperature is often difficult and inefficient. Now, researchers have found a way to accomplish the same shape-memory tricks using magnets rather than temperature-an advance that could make possible efficient, less clunky moving parts for machine components in aircraft, automobiles or even robots.

Materials scientists Bob O’Handley of MIT and Kari Ullakko from the Helsinki University of Technology in Finland reasoned that an alloy of nickel, manganese and gallium might respond to a magnetic field with a change of shape. When the researchers expose a sample of the new alloy to a magnetic field about two or three times stronger than that generated by a refrigerator magnet, the material becomes rubbery and expands. When the researchers remove the field, a spring pushing on the alloy causes it to revert to its original shape. By alternating the magnetic field at high speed, the researchers can repeat the cycle several thousand times per minute. “It sort of looks like a heart beating very quickly,” says O’Handley.

Adding magnetic control, researchers believe, will make shape memory alloys much more practical to use. “There’s a great deal of promise in these [magnetically controlled] materials,” says the University of Minnesota’s Thomas Shield, who also studies shape memory alloys. O’Handley, for example, envisions using the alloy to make lightweight mechanical parts in airplane wing flaps. A lump of the new material wrapped in a magnetic coil could raise and lower a flap on cue, replacing today’s heavy hydraulic systems that require a central pump and multiple oil lines running to the flaps.

This story is part of our July/August 2001 Issue
See the rest of the issue
Subscribe

O’Handley and his crew have also partnered with two engineering firms in the Boston area-Mid Technology and ACX-that manufacture valves and pumps for automotive and aerospace applications, among other uses. The researchers aim to have a working prototype of a generic pump ready before the end of this year. The MIT scientists are also working with four other universities to make a magnetic shape memory material that combines the metal alloy with a polymer. If it works, it could lead to an even lighter and cheaper “beating heart.”

Become an MIT Technology Review Insider for in-depth analysis and unparalleled perspective.

Subscribe today
More from Business Impact

How technology advances are changing the economy and providing new opportunities in many industries.

Want more award-winning journalism? Subscribe to Insider Online Only.
  • Insider Online Only {! insider.prices.online !}*

    {! insider.display.menuOptionsLabel !}

    Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.