Pocket Rockets Pack a Punch

First proposed a decade ago, microrocketry is taking off. Before long, dime-sized dynamos may power everything from tiny satellites to “smart dust.”

The rocket ignites. A jet of white-hot flame shoots out below. Its operators increase power and the flame grows-until the rocket explodes in a ball of fire.

Exactly as expected. A dangerous experiment to perform in a lab? Not when the rocket is a dime-sized microelectromechanical system-a so-called MEMS-made of silicon. Laboratories around the country are looking at MEMS rockets and other micropropulsion devices to power a new generation of cheap, tiny satellites and other devices.

Heading for Orbit

The most ambitious project sits in the Massachusetts Institute of Technology’s Department of Aeronautics and Astronautics. With NASA support, MIT engineers are building a microrocket that works more or less like the engine on the space shuttle. NASA hopes to use the microrocket for attitude control on future space vehicles, says Alan Epstein, head of MIT’s Microengine Project.

MIT’s “space cadets,” says Epstein, also want to deploy arrays of microrockets to launch tiny satellites about the size of a Coke can. Networks of “nanosats” could support earth observation or satellite maintenance.

The bottom line for an engine is the amount of thrust it generates relative to its own weight. The space shuttle’s main engine produces a thrust-to-weight ratio of 70. MIT’s microrocket has reached 85, and its builders estimate a potential ratio more than 10 times that-more than enough to launch a satellite into space.

“We’re looking at very high thrust-the high-performance end of microrocket engines,” Epstein says. That is what sets the MIT project apart from microrocket efforts at the University of California at Berkeley, Caltech and elsewhere, he explained.

Epstein says the MIT project is on track to produce a working, integrated microrocket by the end of 2003. The next milestone comes this September, when Epstein aims to build a working MEMS turbopump, a key component that will inject fuel into the rocket’s combustion chamber at very high pressure.

“Right now we have a roomful of equipment that delivers the fuel,” Epstein says. “The turbopump miniaturizes all that” with a fan-like microturbine that pumps fuel into the combustion chamber.

The turbopump under construction is significantly larger than the microrocket itself. To integrate the two-still a distant goal-engineers may take a page from rockets like the Russian-designed RD-170, which fuels four combustion chambers from a single turbopump.

Berkeley Blasts Off

Impressive as it is, MIT’s microrocket still sits on a lab bench. That’s not the case at Berkeley, where engineers at the Sensor and Actuator Center have already launched a more modest MEMS rocket.

The Berkeley microrocket, an advanced version of a “match stick rocket,” is half the size of the MIT device, with an average thrust-to-weight ratio of five.

That’s still plenty of thrust for project advisor Kris Pister. He spearheads an effort to design “smart dust”-millimeter-scale MEMS devices capable of sensing, computation, communication and mobility. “All of my work is focused on making the absolutely smallest vehicles that can be controlled by humans,” he explains.

Networks of smart dust, Pister says, could study a weather system, battlefield, rainforest canopy or any hard-to-reach area.

“We just want to give a sensor the ability to jump up and move around and land,” Pister says. The trick, he says, is deploying the dust. The most promising designs are flat wafers of silicon, a shape that lets them take advantage of solar power but makes for a lousy projectile, due to drag. He explains that an onboard microrocket will propel smart dust much farther than a separate launcher using the same amount of fuel.

The dime-sized Berkeley microrocket flies edge on (“like the Millennium Falcon,” Pister says) for a vertical distance of three meters. The rocket’s theoretical maximum height is closer to 50 meters-high enough, he says, for a device that could drift for miles in the air currents before landing.

Tech Obsessive?
Become an Insider to get the story behind the story — and before anyone else.
Subscribe today

Uh oh–you've read all five of your free articles for this month.

Insider Premium

$179.95/yr US PRICE

More from undefined

Want more award-winning journalism? Subscribe to Insider Premium.

  • Insider Premium {! insider.prices.premium !}*

    {! insider.display.menuOptionsLabel !}

    Our award winning magazine, unlimited access to our story archive, special discounts to MIT Technology Review Events, and exclusive content.

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

    Access to the Magazine archive. Over 24,000 articles going back to 1899 at your fingertips.

    Special Discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

    First Look. Exclusive early access to stories.

    Insider Conversations. Join in and ask questions as our editors talk to innovators from around the world.

You've read of free articles this month.