We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Pocket Rockets Pack a Punch

First proposed a decade ago, microrocketry is taking off. Before long, dime-sized dynamos may power everything from tiny satellites to “smart dust.”

The rocket ignites. A jet of white-hot flame shoots out below. Its operators increase power and the flame grows-until the rocket explodes in a ball of fire.

Exactly as expected. A dangerous experiment to perform in a lab? Not when the rocket is a dime-sized microelectromechanical system-a so-called MEMS-made of silicon. Laboratories around the country are looking at MEMS rockets and other micropropulsion devices to power a new generation of cheap, tiny satellites and other devices.

Heading for Orbit

The most ambitious project sits in the Massachusetts Institute of Technology’s Department of Aeronautics and Astronautics. With NASA support, MIT engineers are building a microrocket that works more or less like the engine on the space shuttle. NASA hopes to use the microrocket for attitude control on future space vehicles, says Alan Epstein, head of MIT’s Microengine Project.

MIT’s “space cadets,” says Epstein, also want to deploy arrays of microrockets to launch tiny satellites about the size of a Coke can. Networks of “nanosats” could support earth observation or satellite maintenance.

The bottom line for an engine is the amount of thrust it generates relative to its own weight. The space shuttle’s main engine produces a thrust-to-weight ratio of 70. MIT’s microrocket has reached 85, and its builders estimate a potential ratio more than 10 times that-more than enough to launch a satellite into space.

“We’re looking at very high thrust-the high-performance end of microrocket engines,” Epstein says. That is what sets the MIT project apart from microrocket efforts at the University of California at Berkeley, Caltech and elsewhere, he explained.

Epstein says the MIT project is on track to produce a working, integrated microrocket by the end of 2003. The next milestone comes this September, when Epstein aims to build a working MEMS turbopump, a key component that will inject fuel into the rocket’s combustion chamber at very high pressure.

“Right now we have a roomful of equipment that delivers the fuel,” Epstein says. “The turbopump miniaturizes all that” with a fan-like microturbine that pumps fuel into the combustion chamber.

The turbopump under construction is significantly larger than the microrocket itself. To integrate the two-still a distant goal-engineers may take a page from rockets like the Russian-designed RD-170, which fuels four combustion chambers from a single turbopump.

Berkeley Blasts Off

Impressive as it is, MIT’s microrocket still sits on a lab bench. That’s not the case at Berkeley, where engineers at the Sensor and Actuator Center have already launched a more modest MEMS rocket.

The Berkeley microrocket, an advanced version of a “match stick rocket,” is half the size of the MIT device, with an average thrust-to-weight ratio of five.

That’s still plenty of thrust for project advisor Kris Pister. He spearheads an effort to design “smart dust”-millimeter-scale MEMS devices capable of sensing, computation, communication and mobility. “All of my work is focused on making the absolutely smallest vehicles that can be controlled by humans,” he explains.

Networks of smart dust, Pister says, could study a weather system, battlefield, rainforest canopy or any hard-to-reach area.

“We just want to give a sensor the ability to jump up and move around and land,” Pister says. The trick, he says, is deploying the dust. The most promising designs are flat wafers of silicon, a shape that lets them take advantage of solar power but makes for a lousy projectile, due to drag. He explains that an onboard microrocket will propel smart dust much farther than a separate launcher using the same amount of fuel.

The dime-sized Berkeley microrocket flies edge on (“like the Millennium Falcon,” Pister says) for a vertical distance of three meters. The rocket’s theoretical maximum height is closer to 50 meters-high enough, he says, for a device that could drift for miles in the air currents before landing.

Tech Obsessive?
Become an Insider to get the story behind the story — and before anyone else.

Subscribe today
Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.