Intelligent Machines

Holographic Memory

How holographic data storage works.

Stackable storage. It’s the ultimate space saver, making order out of chaotic cabinets, closets, attics and garages. But until recently it had not made its way into the realm of computers, where megabytes of data are scattered on the face of a disk like millions of shoes across a bedroom floor. Now a few big-name media makers, including Lucent Technologies and IBM, are making important strides in developing optical holography, which stacks information throughout the thickness of a storage medium, instead of just writing it to the surface.

Holographic storage relies mainly on laser light and a photosensitive material-usually a crystal or a polymer-to save data. It works by splitting a laser beam in two. One beam contains the data and is referred to as the “object beam”; the other holds the location of the data and is known as the “reference beam.” The two beams intersect to create an intricate pattern of light and dark bands. A replica of this so-called interference pattern gets engraved three-dimensionally into the photosensitive material and becomes the hologram. To retrieve the stored data, the reference beam is shone into the hologram, which refracts the light to replicate the data beam.

The holographic technique packs data so tightly that one 12-centimeter disk could eventually hold a terabyte of data-about as much information as 200 DVDs. What’s more, holographic storage opens the possibility of reading and writing data a million bits at a time, instead of one by one as with magnetic storage. That means you could duplicate an entire DVD movie in mere seconds.

This story is part of our May 2001 Issue
See the rest of the issue
Subscribe

The idea of storing tons of data three-dimensionally was first proposed by Polaroid scientist Pieter J. van Heerden in the 1960s. But developing the technology was difficult, because the required optical equipment was large and expensive. A typical laser back then, for example, was two meters long. Today, lasers are measured in mere centimeters and are much cheaper.

Holographic storage equipment is not yet produced commercially, but the technology has the potential to spawn new devices and systems. It could supplant DVDs, allow people to save information on 3-D disks, and enable researchers to sift through enormous databases in the blink of an eye. The future may not be that far off, either. Recently, Lucent launched a new venture, InPhase Technologies, to develop holographic storage, and plans to have a product on the market in a couple of years.

Become an MIT Technology Review Insider for in-depth analysis and unparalleled perspective.

Subscribe today

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe to Insider Basic.
  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning magazine and daily delivery of The Download, our newsletter of what’s important in technology and innovation.

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.