Intelligent Machines

A Bucketful of Buckytransistors

Carbon nanotube transistors may promise nanoelectronic marvels.

In what may prove a major step toward nanoscale electronics, researchers at IBM have built the first array of transistors that use carbon nanotubes.

The discovery “may be tremendously important in nanoelectronic devices-if we ever get to that point,” says Richard Smalley, winner of the Nobel Prize in 1996 for his discovery of the related carbon molecules dubbed buckyballs.

Wonder Wire

For nearly a decade, the carbon nanotube-also known as a buckytube-has been heralded as the wonder wire of the future. Excellent conductors with amazing strength, the tiny tubes come in all manner of shapes, sizes and electrical properties. That has led scientists to envision a wide range of applications-from nanoscale electronics to super materials, to tiny machines.

A carbon nanotube is a sheet of carbon atoms joined in a pattern of hexagons and rolled into a cylinder (think chicken wire). Where the two ends wrap around and meet determines the conductive properties of the nanotube. Line the ends up one way, and the nanotube conducts electricity like a metal. But line them up another, and the nanotube behaves like a semiconductor. Roll one nanotube around another, and you get a multi-walled nanotube-a metal-type inside a semiconductor inside a metal-type, for example.

But the great variety of nanotubes is also a source of great frustration.

When scientists grow nanotubes in the lab, they get every possible variety. To find the desired type, they must examine the tubes one at a time-an excruciating process. To compound the problem, nanotubes tend to bunch together into “ropes,” and a metal-type nanotube will short-circuit its semiconducting neighbors.

“The stuff is like sticky spaghetti,” says Philip Collins, a member of the IBM research team who now works for Covalent Materials, a nanotechnology startup. “Within each bundle there might be 10 or 100 nanotubes, but some fraction are going to be metal, and some fraction are going to be semiconducting.”

Constructive Destruction

In a paper published in this week’s Science, researchers at IBM’s T. J. Watson Research Center in Yorktown Heights, NY, described a new method to separate the wheat from the chaff-in this case, the semiconducting nanotubes from their metal-type neighbors.

The scientists-project leader Phaedon Avouris, Michael Arnold and Collins-call their separation method “constructive destruction.” Constructive because they scatter a layer of nanotubes over a silicon wafer and then create a pattern of electrodes, with some electrodes intersecting the nanotubes and some electrodes nearby. The nearby electrodes act as gates, switching off the semiconducting nanotubes. Destructive because the intersecting electrodes zap the metal-type tubes with a current large enough to burn them up. What’s left are only the semiconducting tubes, which can be turned on and off by the gate electrodes.

“It’s the difference between being able to make a thousand of these devices in a day and making one such device over a couple of days,” says Tom Theis, director of physical sciences at the Watson Center.

Theis predicts that “constructive destruction” will let researchers design and study thousands of nanoscale devices on a single chip. But, he notes, the method is still too laborious to make its way to assembly lines.

In the long run, engineers need to be able to grow the kind of nanotube they want where they want it, says Mark Ratner, professor of chemistry at Northwestern University. “Instead of making the red and green M&Ms and separating them,” he says, “you want to make just the red or green M&Ms.”

Tech Obsessive?
Become an Insider to get the story behind the story — and before anyone else.
Subscribe today

Uh oh–you've read all five of your free articles for this month.

Insider Premium

$179.95/yr US PRICE

More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe and become an Insider.

  • Insider Premium {! insider.prices.premium !}*

    {! insider.display.menuOptionsLabel !}

    Our award winning magazine, unlimited access to our story archive, special discounts to MIT Technology Review Events, and exclusive content.

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

    Access to the Magazine archive. Over 24,000 articles going back to 1899 at your fingertips.

    Special Discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

    First Look. Exclusive early access to stories.

    Insider Conversations. Join in and ask questions as our editors talk to innovators from around the world.

  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus ad-free web experience, select discounts to partner offerings and MIT Technology Review events

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

    Access to the Magazine archive. Over 24,000 articles going back to 1899 at your fingertips.

    Special Discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning magazine and daily delivery of The Download, our newsletter of what’s important in technology and innovation.

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

You've read of free articles this month.