Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Intelligent Machines

Quantum Leap

Each year, the size of transistors shrinks, thereby improving performance. Yet transistors must be big enough to allow electrons to pass through. Preparing for an inevitable impasse, Toshiba recently demonstrated a transistor that can turn on and off based on the movement of a single electron. Unlike other experimental quantum-level transistors, the device can operate at room temperature. It’s also the first successful hybrid circuit, mixing single-electron transistors with traditional metal-oxide transistors, which are required to boost the weak quantum-level signal. Chips based on the circuit should offer blazing performance and low power consumption. Before building a full-fledged processor, researchers face challenges such as finding a way to protect the chip from the disrupting effects of stray electromagnetic fields, electrical discharges and physical movement. Hybrid chips should be available commercially by 2010. -C. Conti

More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe to Insider Online Only.
  • Insider Online Only {! insider.prices.online !}*

    {! insider.display.menuOptionsLabel !}

    Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.