Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Intelligent Machines

Nanodot Lasers

Optical Networks

Make particles of semiconductors small enough-just a few nanometers across-and they glow in a dazzling range of colors. These nano particles are known as quantum dots, because quantum effects tune the color of the glow to the size of the particle-a phenomenon that scientists have seized upon to make exquisitely sensitive biomedical assays (see “Quantum Dot Com,” TR January/February 2000). In theory, these tiny glowing particles could also be a boon for optical networking by providing lasers and amplifiers that work in a wide range of frequencies. But for over a decade experts have been trying to fashion quantum-dot lasers, with little success.

Now MIT chemist Moungi Bawendi and Victor Klimov, a laser expert at Los Alamos National Lab in New Mexico, may have stumbled upon the solution. Klimov and Bawendi discovered that when the dots are stimulated with a powerful pump of light, most of them fritter away the energy as heat in less than one-millionth of a second. But if the dots are crammed close enough together, photons released by neighboring dots arrive in time to trigger additional photons from a nanodot before the energy dissipates. A dense film of cadmium selenide dots that Bawendi prepared for Los Alamos did the trick, generating a cascade of photons.

Bawendi has since fashioned this cascade of light into a laser and has started to tweak the dots to make the beam more efficient. Success could free optical networks and other laser-dependent technologies from today’s limited spectrum of beams. For starters, quantum-dot amplifiers could extend long-range transmission of fiber-optic signals to wavelengths of light outside the narrow band of infrared beams served by today’s amplifiers. “The colors are essentially limitless,” says Bawendi.

This story is part of our April 2001 Issue
See the rest of the issue
Subscribe

If the scientists are right, the future of quantum dots in expanding the possibilities of optical communication could be bright, indeed.

Tech Obsessive?
Become an Insider to get the story behind the story — and before anyone else.

Subscribe today
More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.