Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Chameleon Chips

Wireless: Hardware that can reconfigure itself on the fly could give wireless devices more power

You’ve seen the commercials. Soon you’ll be doing business on the beach, complete with audioconferencing and instantaneous access to the latest sales data from the office. What this vision of a wireless future disregards, though, is that high-end portable devices have a voracious need for power because each application requires its own silicon chip. Maybe wireless computing has a future, but it’s only going to last as long as your batteries do.

Silicon Valley-based QuickSilver Technology, one of many startups working on the problem, has found a way to drastically cut power requirements by making a single silicon chip that can reconfigure itself on the fly to understand different wireless signals. Developed in partnership with BellSouth and scheduled for midyear release, QuickSilver’s first chip will be able to decode incompatible cell-phone standards so that a user can access different phone networks instead of just one. Eventually the company expects to have chips that can run multiple applications, switching from audio to video to text processing-all on the juice of a cell phone. “What we’re really doing is building a container,” says Paul Master, vice president of technology at QuickSilver. “The value is the software you pour into it.”

The QuickSilver chip includes a programmable logic “fabric,” an array of logic gates that can understand software signals and reprogram itself for different operations. When a chip receives, say, a specific cellular phone signal, it calls instructions to support that signal’s protocol from its memory, loads the appropriate architecture into the reconfigurable portion of the chip and executes the operation. When it receives a different type of signal, it reconfigures itself once more and repeats the process. By comparison, a device that used a different piece of silicon for each operation would drain a battery in no time-that’s why it’s currently difficult to play MP3 files on your cell phone.

This story is part of our January/February 2001 Issue
See the rest of the issue
Subscribe

If QuickSilver does deliver, then yet another important piece of the wireless computing puzzle will have fallen into place. “They’re trying to do something that hasn’t been done before, and it’s not clear they’ll succeed,” says Nick Tredennick, editor of Dynamic Silicon, a newsletter that covers dynamic logic devices. “But of course, you could say that about all great ideas.”

AI is here. Will you lead or follow?
Join us at EmTech Digital 2019.

Register now
Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.