Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not a subscriber? Subscribe now for unlimited access to online articles.

Intelligent Machines

Scissors, Paper... Buckeyball

A soccer-ball-shaped molecule kicked off a nanotech revolution.

A pair of scissors, a legal pad, a late night beer. All ordinary items, but together they helped an extraordinary tool-nanotechnology-take its first steps out of the realm of theory and into practice.

It started with stardust. In 1985, University of Sussex astronomer Harry Kroto teamed up with Rice University chemists Richard Smalley and Robert Curl to study the structure of carbon molecules on the surface of red giant stars. Along with graduate students James Heath and Sean O’Brien, they mimicked star conditions by zapping carbon with lasers and found something unexpected: a high proportion of extremely stable clusters with 60 carbon atoms each. Someone in the group-nobody remembers who-suggested each cluster might be a single molecule shaped like a hollow ball.

The team struggled to build a model, something like two fused geodesic domes. Smalley worked first on a computer but got nowhere. Heath tried making the shape with gumdrops and toothpicks but failed. Smalley resorted to cutting out hexagons from a legal pad, trying to assemble a sphere from them. Still no luck. But after a post-midnight beer, he remembered geodesic domes can contain pentagons as well as hexagons. Finally, success. Twenty hexagons and 12 pentagons made a 60-atom sphere-a carbon soccer ball. The team dubbed it “buckminsterfullerene,” after the polymath architect who created the geodesic dome.

This story is part of our September/October 2000 Issue
See the rest of the issue
Subscribe

On September 11, a day before they submitted their findings to the journal Nature, O’Brien, Smalley, Curl, Kroto and Heath posed for a photo with a pair of “buckyball” models and a soccer ball. When the paper ran in November, chemists, physicists and materials scientists were intrigued by the newly discovered form of carbon. The field got another big boost in 1991 when NEC researcher Sumio Iijima discovered an important chemical cousin-the first nanotube. Researchers have used these buckytubes to create tiny experimental diodes, metal-filled “nanowires” and even a flat-screen display with a picture as sharp as conventional television’s. The discovery that kicked it all off won Smalley, Curl and Kroto a 1996 Nobel Prize and opened the door to advances in fields ranging from medicine to computing, batteries to building materials.

Learn from the humans leading the way in intelligent machines at EmTech Next. Register Today!
June 11-12, 2019
Cambridge, MA

Register now
More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe to MIT Technology Review.
  • Print + All Access Digital {! insider.prices.print_digital !}* Best Value

    {! insider.display.menuOptionsLabel !}

    The best of MIT Technology Review in print and online, plus unlimited access to our online archive, an ad-free web experience, discounts to MIT Technology Review events, and The Download delivered to your email in-box each weekday.

    See details+

    12-month subscription

    Unlimited access to all our daily online news and feature stories

    6 bi-monthly issues of print + digital magazine

    10% discount to MIT Technology Review events

    Access to entire PDF magazine archive dating back to 1899

    Ad-free website experience

    The Download: newsletter delivery each weekday to your inbox

    The MIT Technology Review App

  • All Access Digital {! insider.prices.digital !}*

    {! insider.display.menuOptionsLabel !}

    The digital magazine, plus unlimited site access, our online archive, and The Download delivered to your email in-box each weekday.

    See details+

    12-month subscription

    Unlimited access to all our daily online news and feature stories

    Digital magazine (6 bi-monthly issues)

    Access to entire PDF magazine archive dating back to 1899

    The Download: newsletter delivery each weekday to your inbox

  • Print Subscription {! insider.prices.print_only !}*

    {! insider.display.menuOptionsLabel !}

    Six print issues per year plus The Download delivered to your email in-box each weekday.

    See details+

    12-month subscription

    Print magazine (6 bi-monthly issues)

    The Download: newsletter delivery each weekday to your inbox

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.