Sands of Time

From the editor in chief

You hold in your hands the first special issue of Technology Review for 2000. It’s on a subject we think will increase in importance not just through this year but for the rest of the decade and perhaps for the rest of the new century. That subject: What happens after current silicon-based computing technologies begin to reach the limits of their rapid increase in speed?

For the last four decades, computers have presented a remarkable picture. While dramatically increasing in speed and computing power, they’ve also dropped precipitously in price. Underlying this pattern is a rule of thumb known as “Moore’s Law,” named for Intel co-founder Gordon Moore, who formulated it in the 1960s. Moore hypothesized that engineers would be able to squeeze more circuit elements into integrated circuits at a pace that represented a doubling every year or so.

The exponential growth in computing that Moore described underlies the growth of the Internet and the accompanying economic boom we’re now experiencing. Which brings up the unsettling question of what happens when Moore’s Law runs out of gas. After all, it’s not a law of nature. It’s just a rule of thumb describing what’s happened in one industry-computer manufacturing-over a couple of decades. Nothing says it’s eternal. Indeed, there have been plenty of cries of alarm before about the end of Moore’s Law, but, as Charles Mann points out in his introductory article (“The End of Moore’s Law?”), this time there is ample reason to take the alarms seriously.

This story is part of our May/June 2000 Issue
See the rest of the issue
Subscribe

If silicon-based computing technology reaches its limits in the next decade, what is waiting in the labs to take its place? That’s the question this special issue takes on. In four articles on new approaches to computing- Molecular Computing, Quantum Computing, Biological Computing, and DNA Computing-the issue outlines how the process of computation can be divorced from silicon and embodied in new mediums.

None of these approaches is ready to serve as an all-purpose replacement for silicon. In fact, one or more may never be more than specialized methods applied in particular niches, such as high-level cryptography. Which raises the question of why major corporations would invest money, time and energy in researching such high-risk propositions. Robert Buderi gives some surprising answers to that question and follows it up with an interview with Carly Fiorina, the new CEO of Hewlett-Packard-a company that is taking molecular computing very seriously.

Although all of these new approaches are high-risk research ventures, one of them, or one of their technological descendants, might one day turn out to be as revolutionary as integrated circuits incised on silicon chips. We won’t know which one for some time, since it takes a good long while for a profound new technology to work its way out of the laboratory and transform the economy. But if you want to stay ahead of the curve, you can’t wait until the results of that new technology are evident to all. You have to start looking much earlier, when that revolutionary new technology is being born in cutting-edge laboratories, academic and corporate. For those who want early warning of the next computing technology with the potential to be as revolutionary as silicon, the time to pay attention is now. And this issue is the place to start.

Become an MIT Technology Review Insider for in-depth analysis and unparalleled perspective.
Subscribe today

Uh oh–you've read all five of your free articles for this month.

Insider Premium

$179.95/yr US PRICE

More from undefined

Want more award-winning journalism? Subscribe and become an Insider.

  • Insider Premium {! insider.prices.premium !}*

    {! insider.display.menuOptionsLabel !}

    Our award winning magazine, unlimited access to our story archive, special discounts to MIT Technology Review Events, and exclusive content.

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

    Access to the Magazine archive. Over 24,000 articles going back to 1899 at your fingertips.

    Special Discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

    First Look. Exclusive early access to stories.

    Insider Conversations. Join in and ask questions as our editors talk to innovators from around the world.

  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus ad-free web experience, select discounts to partner offerings and MIT Technology Review events

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

    Access to the Magazine archive. Over 24,000 articles going back to 1899 at your fingertips.

    Special Discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning magazine and daily delivery of The Download, our newsletter of what’s important in technology and innovation.

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

You've read of free articles this month.