Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Rewriting Life

Robotic Road to Recovery

Americans suffer three-quarters of a million strokes every year. For those who survive, recovery can be long and arduous. It doesn’t help that rehabilitation techniques are, for the most part, still remarkably low-tech. Therapists typically exercise patients’ impaired limbs using repetitive hands-on maneuvers and mark improvements on clipboards. Because it’s labor-intensive, the process is also expensive. Indeed, the annual price tag for the U.S. economy of stroke treatment is $30 billion and will likely escalate as Baby Boomers reach the peak stroke ages and drugs improve survival rates.

One solution: robots to boost the effectiveness and productivity of rehab. Systems designed by Neville Hogan and Hermano I. Krebs of MIT simultaneously deliver therapy and measure recovery of limb control. Playing specifically designed video games, the patient maneuvers the robot’s mechanical arm horizontally, moving it like an oversized computer mouse to work the wrists, elbows and forearms at graded levels of resistance. A computer records the robot arm’s position, velocity and the force the patient exerts.

Hogan and Krebs developed their devices at MIT’s Newman Laboratory for Biomechanics and Human Rehabilitation. They have tested them at the Burke Rehabilitation Center in White Plains, N.Y. Those tests, including a recently completed trial involving 60 stroke victims, show that, on average, patients receiving robotic therapy regained control of their shoulders and elbows at twice the rate of those limited to standard therapy. “These results are encouraging,” says Larry Goldstein, head of the Stroke Policy Program at Duke University Medical Center. “There appears to be some improvement of stroke-related impairments that is long lasting.”

This story is part of our November/December 1999 Issue
See the rest of the issue
Subscribe

Hogan envisions a clinician working a room full of robot-assisted inpatients, or even demonstrating exercises online and monitoring patients at home who are rigged with robot and modem. The MIT scientists are fine-tuning the system and devising new versions to work with legs and move in three dimensions. Says Krebs: “Our work opens up a vast area of research not only for us, but also for other groups to develop new tools to be used in stroke rehabilitation.”

Cut off? Read unlimited articles today.

Become an Insider
Already an Insider? Log in.
More from Rewriting Life

Reprogramming our bodies to make us healthier.

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

    Bimonthly digital/PDF edition

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special interest publications

    Discount to MIT Technology Review events

    Special discounts to select partner offerings

    Ad-free web experience

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.