Skip to Content

  • Age:

    Vladimir Aksyuk

    Vladimir Aksyuk made a name for himself in the world of microelectromechanical systems in 1999 when he spearheaded the development of Bell Labs all-optical switch – the first commercial device to use thousands of tiny rotating mirrors to intricately manipulate optical communications signals without converting them into electrical pulses and back. Its performance was 16 times faster than that of the best of its electrical counterparts. Aksyuk has since expanded on that technology to create systems featuring arrays with mirrors as small as 100 micrometers across, each one capable of not only rotation but also up-and-down motion. These arrays enable extremely precise control of laser beams, which is crucial to the U.S. militarys program to develop a secure, high-bandwidth laser communication system for aircraft, ground bases, and even space vehicles. The arrays may also soon change how microchips are produced. The Russian-born Aksyuk is heading a project at Bell Labs to use micromirrors to carve out microchips without the costly “masks” – basically, stencils patterned with circuit designs – that are currently used to optically etch chips. Not only could this lower production costs and time, but it could also extend the lifetime of Moores Law.