Skip to Content

  • Age:

    Ted Sargent

    Telecom networks are half-hare, half tortoise. Conversations and data blaze down fiber-optic cables but slow to a crawl when they encounter electronic switches at network junctions. Photonic crystals, which can manipulate photons much as semiconductors manipulate electrons, are the best hope for clearing such roadblocks. While others are exploring them, Ted Sargent is close to building practical devices. Sargent came to the University of Toronto as a grad student in 1995, joined its faculty in 1998, and in three years was awarded a coveted Canada Research Chair position. His chief advance is a process to specify and guide the growth of photonic crystals- a mix of electrochemistry, microchip fabrication, and holographic printing. Sargent etches a holographic pattern into an electrically conductive film that coats a glass plate. Then he electrifies the film, generating a holographic “tractor beam” that attracts latex beads and stacks them into a photonic crystal. Sargent has fashioned hair-thin rows of crystals that could act as circuits, and Nortel eagerly awaits proof they can manipulate photons. If so, photonic crystals could speed up the telecom network, including the “last mile” of cable to homes.