Mung Chiang likes to say that there’s nothing more practical than a good theory. An assistant professor of electrical engineering, he improves the design of telecommunications networks by applying the mathematics of optimization theory. Through industry collaborations, his algorithms are revolutionizing the backbone of the Internet, the broadband connections that bring data and video to homes and offices, and wireless networks of every stripe.

In one project, Chiang and coworkers found a way around the limits of the current Internet routing protocol, which sends packets along the shortest available paths on the network. It’s a seemingly straightforward strategy that ends up causing complex network-management problems. The researchers realized there were advantages to sending the occasional packet along a longer path; the new algorithm achieves the lowest computational cost possible for a routing protocol and increases network capacity by 15 percent–without adding equipment to the network.

Though the real-world impact of his work matters to Chiang, he says another important motivation is the beauty of an airtight mathematical proof. “I’m an engineer at heart,” he says, “and a mathematician in my brain.”

*–Brendan Borrell*