Skip to Content

  • Age:

    Fiona Brinkman

    Pathogens often exploit our cells to thrive. Fiona Brinkman therefore hypothesizes that some of their genes are similar to human genes. By identifying such genes computationally, Brinkman is trying to understand how drugs could stop pathogens from storming the body’s fortress. Brinkman coordinates this interdisciplinary work through an online “pathogenomics” project she runs from Simon Fraser University in British Columbia. It uses a free program she developed called PhyloBlast to evaluate relationships between genes by comparing their sequences and the proteins they code for. Previously, Brinkman organized the first Internet-based effort to refine and annotate bacterial genome data, focusing on P. aeruginosa, a widely drug- resistant bacterium that causes fatal infections in cystic-fibrosis patients. The group gained critical insight into how the bacterium works, which had eluded researchers. “Once we have the parts list for how the bug is functioning,” Brinkman says, “we can figure out new approaches to drugs.” Her collaborative electronic approach is now being used by other genome researchers.