Skip to Content
Biotechnology and health

Biotech companies are trying to make milk without cows

The bird flu crisis on dairy farms could boost interest in milk protein manufactured in microorganisms and plants. 

a pipette adding non-dairy milk to a beaker on a digital scale in the lab

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here. 

The outbreak of avian influenza on US dairy farms has started to make milk seem a lot less wholesome. Milk that’s raw, or unpasteurized, can actually infect mice that drink it, and a few dairy workers have already caught the bug. 

The FDA says that commercial milk is safe because it is pasteurized, killing the germs. Even so, it’s enough to make a person ponder a life beyond milk—say, taking your coffee black or maybe drinking oat milk.

But for those of us who can't do without the real thing, it turns out some genetic engineers are working on ways to keep the milk and get rid of the cows instead. They’re doing it by engineering yeasts and plants with bovine genes so they make the key proteins responsible for milk’s color, satisfying taste, and nutritional punch.

The proteins they’re copying are casein, a floppy polymer that’s the most abundant protein in milk and is what makes pizza cheese stretch, and whey, a nutritious combo of essential amino acids that’s often used in energy powders.

It’s part of a larger trend of replacing animals with ingredients grown in labs, steel vessels, or plant crops. Think of the Impossible burger, the veggie patty made mouthwatering with the addition of heme, a component of blood that’s produced in the roots of genetically modified soybeans.

One of the milk innovators is Remilk, an Israeli startup founded in 2019, which has engineered yeast so it will produce beta-lactoglobulin (the main component of whey). Company cofounder Ori Cohavi says a single biotech factory of bubbling yeast vats feeding on sugar could in theory “replace 50,000 to 100,000 cows.” 

Remilk has been making trial batches and is testing ways to formulate the protein with plant oils and sugar to make spreadable cheese, ice cream, and milk drinks. So yes, we’re talking “processed” food—one partner is a local Coca-Cola bottler, and advising the company are former executives of Nestlé, Danone, and PepsiCo.

But regular milk isn’t exactly so natural either. At milking time, animals stand inside elaborate robots, and it looks for all the world as if they’re being abducted by aliens. “The notion of a cow standing in some nice green scenery is very far from how we get our milk,” says Cohavi. And there are environmental effects: cattle burp methane, a potent greenhouse gas, and a lactating cow needs to drink around 40 gallons of water a day

“There are hundreds of millions of dairy cows on the planet producing greenhouse waste, using a lot of water and land,” says Cohavi. “It can’t be the best way to produce food.”  

For biotech ventures trying to displace milk, the big challenge will be keeping their own costs of production low enough to compete with cows. Dairies get government protections and subsidies, and they don’t only make milk. Dairy cows are eventually turned into gelatin, McDonald’s burgers, and the leather seats of your Range Rover. Not much goes to waste.

At Alpine Bio, a biotech company in San Francisco (also known as Nobell Foods), researchers have engineered soybeans to produce casein. While not yet cleared for sale, the beans are already being grown on USDA-sanctioned test plots in the Midwest, says Alpine’s CEO, Magi Richani

Richani chose soybeans because they’re already a major commodity and the cheapest source of protein around. “We are working with farmers who are already growing soybeans for animal feed,” she says. “And we are saying, ‘Hey, you can grow this to feed humans.’ If you want to compete with a commodity system, you have to have a commodity crop.”

Alpine intends to crush the beans, extract the protein, and—much like Remilk—sell the ingredient to larger food companies.

Everyone agrees that cow’s milk will be difficult to displace. It holds a special place in the human psyche, and we owe civilization itself, in part, to domesticated animals. In fact, they’ve  left their mark in our genes, with many of us carrying DNA mutations that make cow’s milk easier to digest.  

But that’s why it might be time for the next technological step, says Richani. “We raise 60 billion animals for food every year, and that is insane. We took it too far, and we need options,” she says. “We need options that are better for the environment, that overcome the use of antibiotics, and that overcome the disease risk.”

It’s not clear yet whether the bird flu outbreak on dairy farms is a big danger to humans. But making milk without cows would definitely cut the risk that an animal virus will cause a new pandemic. As Richani says: “Soybeans don’t transmit diseases to humans.”

Now read the rest of The Checkup

Read more from MIT Technology Review's archive

Hungry for more from the frontiers of fromage? In the Build issue of our print magazine, Andrew Rosenblum tasted a yummy brie made only from plants. Harder to swallow was the claim by developer Climax Foods that its cheese was designed using artificial intelligence.

The idea of using yeast to create food ingredients, chemicals, and even fuel via fermentation is one of the dreams of synthetic biology. But it’s not easy. In 2021, we raised questions about high-flying startup Ginkgo Bioworks. This week its stock hit an all-time low of $0.49 per share as the company struggles to make … well, anything.

This spring, I traveled to Florida to watch attempts to create life in a totally new way: using a synthetic embryo made in a lab. The action involved cattle at the animal science department of the University of Florida, Gainesville.

From around the web

How many human bird flu cases are there? No one knows, because there’s barely any testing. Scientists warn we’re flying blind as US dairy farms struggle with an outbreak. (NBC)  

Moderna, one of the companies behind the covid-19 shots, is seeing early success with a cancer vaccine. It uses the same basic technology: gene messages packed into nanoparticles. (Nature)

It’s the covid-19 theory that won’t go away. This week the New York Times published an op-ed arguing that the virus was the result of a lab accident. We previously profiled the author, Alina Chan, who is a scientist with the Broad Institute. (NYTimes)

Sales of potent weight loss drugs, like Ozempic, are booming. But it’s not just humans who are overweight. Now the pet care industry is dreaming of treating chubby cats and dogs, too. (Bloomberg)

Deep Dive

Biotechnology and health

What’s next for bird flu vaccines

If we want our vaccine production process to be more robust and faster, we’ll have to stop relying on chicken eggs.

The messy quest to replace drugs with electricity

“Electroceuticals” promised the post-pharma future for medicine. But the exclusive focus on the nervous system is seeming less and less warranted.

That viral video showing a head transplant is a fake. But it might be real someday. 

BrainBridge is best understood as the first public billboard for a hugely controversial scheme to defeat death.

People can move this bionic leg just by thinking about it

A mind-controlled prosthetic feels more like a part of the wearer’s body and promises to make walking easier.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at with a list of newsletters you’d like to receive.