Skip to Content
Artificial intelligence

Synthetic data for AI

The benefits of AI are concentrated in areas where data is available.
Synthetic data promises to fill the gaps.

Concept illustration of synthetic data
Concept illustration of synthetic data
Andrea D'aquino

Key players

Synthetic Data Vault, Syntegra, Datagen, Synthesis AI

 

Availability

Now

Last year, researchers at Data Science Nigeria noted that engineers looking to train computer-vision algorithms could choose from a wealth of data sets featuring Western clothing, but there were none for African clothing. The team addressed the imbalance by using AI to generate artificial images of African fashion—a whole new data set from scratch. 

Such synthetic data sets—computer-generated samples with the same statistical characteristics as the genuine article—are growing more and more common in the data-hungry world of machine learning. These fakes can be used to train AIs in areas where real data is scarce or too sensitive to use, as in the case of medical records or personal financial data. 

The idea of synthetic data isn’t new: driverless cars have been trained on virtual streets. But in the last year the technology has become widespread, with a raft of startups and universities offering such services. Datagen and Synthesis AI, for example, supply digital human faces on demand. Others provide synthetic data for finance and insurance. And the Synthetic Data Vault, a project launched in 2021 by MIT’s Data to AI Lab, provides open-source tools for creating a wide range of data types.

This boom in synthetic data sets is driven by generative adversarial networks (GANs), a type of AI that is adept at generating realistic but fake examples, whether of images or medical records.

Proponents claim that synthetic data avoids the bias that is rife in many data sets. But it will only be as unbiased as the real data used to generate it. A GAN trained on fewer Black faces than white, for example, may be able to create a synthetic data set with a higher proportion of Black faces, but those faces may end up being less lifelike given the limited original data.

Join us March 29-30 at EmTech Digital, our signature AI conference, to hear Unity’s Danny Lange talk about how the video game maker is using synthetic data.

Deep Dive

Artificial intelligence

chasm concept
chasm concept

Artificial intelligence is creating a new colonial world order

An MIT Technology Review series investigates how AI is enriching a powerful few by dispossessing communities that have been dispossessed before.

open sourcing language models concept
open sourcing language models concept

Meta has built a massive new language AI—and it’s giving it away for free

Facebook’s parent company is inviting researchers to pore over and pick apart the flaws in its version of GPT-3

spaceman on a horse generated by DALL-E
spaceman on a horse generated by DALL-E

This horse-riding astronaut is a milestone in AI’s journey to make sense of the world

OpenAI’s latest picture-making AI is amazing—but raises questions about what we mean by intelligence.

labor exploitation concept
labor exploitation concept

How the AI industry profits from catastrophe

As the demand for data labeling exploded, an economic catastrophe turned Venezuela into ground zero for a new model of labor exploitation.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.