Skip to Content
Biotechnology

Surgeons have successfully tested a pig’s kidney in a human patient

The test, in a brain-dead patient, was very short but represents a milestone in the long quest to use animal organs in human transplants.

October 20, 2021
pig kidney transplant surgery
pig kidney transplant surgery
NYU Langone

The news: Surgeons have successfully attached a pig’s kidney to a human patient and watched it start to work, the AP reported today. The pig had been genetically engineered so that its organ was less likely to be rejected. The feat is a potentially huge milestone in the quest to one day use animal organs for human transplants, which would shorten waiting lists.

How it worked: The surgical team, from NYU Langone Health, attached the pig kidney to blood vessels outside the body of a brain-dead woman and observed it for two days. The family agreed to the experiment before the woman was to be taken off life support, the AP reported. The kidney functioned normally—filtering waste and producing urine—and didn’t show signs of rejection during the short observation period. 

The reception: The research was conducted last month and is yet to be peer reviewed or published in a journal, but external experts say it represents a major advance. “There is no doubt that this is a highly significant breakthrough,” says Darren K. Griffin, a professor of genetics at the University of Kent, UK. “The research team were cautious, using a patient who had suffered brain death, attaching the kidney to the outside of the body, and closely monitoring for only a limited amount of time. There is thus a long way to go and much to discover,” he added. 

“This is a huge breakthrough. It’s a big, big deal,” Dorry Segev, a professor of transplant surgery at Johns Hopkins School of Medicine who was not involved in the research, told the New York Times. However, he added, “we need to know more about the longevity of the organ.”

The background: In recent years, research has increasingly zeroed in on pigs as the most promising avenue to help address the shortage of organs for transplant, but it has faced a number of obstacles, most prominently the fact that a sugar in pig cells triggers an aggressive rejection response in humans.

The researchers got around this by genetically altering the donor pig to knock out the gene encoding the sugar molecule that causes the rejection response. The pig was genetically engineered by Revivicor, one of several biotech companies working to develop pig organs to transplant into humans. 

The big prize: There is a dire need for more kidneys. More than 100,000 people in the US are currently waiting for a kidney transplant, and 13 die of them every day, according to the National Kidney Foundation. Genetically engineered pigs could offer a crucial lifeline for these people, if the approach tested at NYU Langone can work for much longer periods.

Deep Dive

Biotechnology

transplant surgery
transplant surgery

The gene-edited pig heart given to a dying patient was infected with a pig virus

The first transplant of a genetically-modified pig heart into a human may have ended prematurely because of a well-known—and avoidable—risk.

Muhammad bin Salman funds anti-aging research
Muhammad bin Salman funds anti-aging research

Saudi Arabia plans to spend $1 billion a year discovering treatments to slow aging

The oil kingdom fears that its population is aging at an accelerated rate and hopes to test drugs to reverse the problem. First up might be the diabetes drug metformin.

individual aging affects covid outcomes concept
individual aging affects covid outcomes concept

Anti-aging drugs are being tested as a way to treat covid

Drugs that rejuvenate our immune systems and make us biologically younger could help protect us from the disease’s worst effects.

Workers disinfect the street outside Shijiazhuang Railway Station
Workers disinfect the street outside Shijiazhuang Railway Station

Why China is still obsessed with disinfecting everything

Most public health bodies dealing with covid have long since moved on from the idea of surface transmission. China’s didn’t—and that helps it control the narrative about the disease’s origins and danger.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.