Skip to Content
Artificial intelligence

Google is using AI to design chips that will accelerate AI

March 27, 2020
Server racks with TPUs used in the AlphaGo matches with Lee Sedol.
Server racks with TPUs used in the AlphaGo matches with Lee Sedol.Google

A new reinforcement-learning algorithm has learned to optimize the placement of components on a computer chip to make it more efficient and less power-hungry.

3D Tetris: Chip placement, also known as chip floor planning, is a complex three-dimensional design problem. It requires the careful configuration of hundreds, sometimes thousands, of components across multiple layers in a constrained area. Traditionally, engineers will manually design configurations that minimize the amount of wire used between components as a proxy for efficiency. They then use electronic design automation software to simulate and verify their performance, which can take up to 30 hours for a single floor plan.

Time lag: Because of the time investment put into each chip design, chips are traditionally supposed to last between two and five years. But as machine-learning algorithms have rapidly advanced, the need for new chip architectures has also accelerated. In recent years, several algorithms for optimizing chip floor planning have sought to speed up the design process, but they’ve been limited in their ability to optimize across multiple goals, including the chip’s power draw, computational performance, and area.

Intelligent design: In response to these challenges, Google researchers Anna Goldie and Azalia Mirhoseini took a new approach: reinforcement learning. Reinforcement-learning algorithms use positive and negative feedback to learn complicated tasks. So the researchers designed what’s known as a “reward function” to punish and reward the algorithm according to the performance of its designs. The algorithm then produced tens to hundreds of thousands of new designs, each within a fraction of a second, and evaluated them using the reward function. Over time, it converged on a final strategy for placing chip components in an optimal way.

Validation: After checking the designs with the electronic design automation software, the researchers found that many of the algorithm’s floor plans performed better than those designed by human engineers. It also taught its human counterparts some new tricks, the researchers said.

Production line: Throughout the field's history, progress in AI has been tightly interlinked with progress in chip design. The hope is this algorithm will speed up the chip design process and lead to a new generation of improved architectures, in turn accelerating AI advancement.

To have more stories like this delivered directly to your inbox, sign up for our Webby-nominated AI newsletter The Algorithm. It's free.

Deep Dive

Artificial intelligence

This new data poisoning tool lets artists fight back against generative AI

The tool, called Nightshade, messes up training data in ways that could cause serious damage to image-generating AI models. 

Rogue superintelligence and merging with machines: Inside the mind of OpenAI’s chief scientist

An exclusive conversation with Ilya Sutskever on his fears for the future of AI and why they’ve made him change the focus of his life’s work.

Driving companywide efficiencies with AI

Advanced AI and ML capabilities revolutionize how administrative and operations tasks are done.

Generative AI deployment: Strategies for smooth scaling

Our global poll examines key decision points for putting AI to use in the enterprise.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.