Skip to Content
Artificial intelligence

Google is using AI to design chips that will accelerate AI

March 27, 2020
Server racks with TPUs used in the AlphaGo matches with Lee Sedol.
Server racks with TPUs used in the AlphaGo matches with Lee Sedol.
Server racks with TPUs used in the AlphaGo matches with Lee Sedol.Google

A new reinforcement-learning algorithm has learned to optimize the placement of components on a computer chip to make it more efficient and less power-hungry.

3D Tetris: Chip placement, also known as chip floor planning, is a complex three-dimensional design problem. It requires the careful configuration of hundreds, sometimes thousands, of components across multiple layers in a constrained area. Traditionally, engineers will manually design configurations that minimize the amount of wire used between components as a proxy for efficiency. They then use electronic design automation software to simulate and verify their performance, which can take up to 30 hours for a single floor plan.

Time lag: Because of the time investment put into each chip design, chips are traditionally supposed to last between two and five years. But as machine-learning algorithms have rapidly advanced, the need for new chip architectures has also accelerated. In recent years, several algorithms for optimizing chip floor planning have sought to speed up the design process, but they’ve been limited in their ability to optimize across multiple goals, including the chip’s power draw, computational performance, and area.

Intelligent design: In response to these challenges, Google researchers Anna Goldie and Azalia Mirhoseini took a new approach: reinforcement learning. Reinforcement-learning algorithms use positive and negative feedback to learn complicated tasks. So the researchers designed what’s known as a “reward function” to punish and reward the algorithm according to the performance of its designs. The algorithm then produced tens to hundreds of thousands of new designs, each within a fraction of a second, and evaluated them using the reward function. Over time, it converged on a final strategy for placing chip components in an optimal way.

Validation: After checking the designs with the electronic design automation software, the researchers found that many of the algorithm’s floor plans performed better than those designed by human engineers. It also taught its human counterparts some new tricks, the researchers said.

Production line: Throughout the field's history, progress in AI has been tightly interlinked with progress in chip design. The hope is this algorithm will speed up the chip design process and lead to a new generation of improved architectures, in turn accelerating AI advancement.

To have more stories like this delivered directly to your inbox, sign up for our Webby-nominated AI newsletter The Algorithm. It's free.

Deep Dive

Artificial intelligence

open sourcing language models concept
open sourcing language models concept

Meta has built a massive new language AI—and it’s giving it away for free

Facebook’s parent company is inviting researchers to pore over and pick apart the flaws in its version of GPT-3

Yann LeCun
Yann LeCun

Yann LeCun has a bold new vision for the future of AI

One of the godfathers of deep learning pulls together old ideas to sketch out a fresh path for AI, but raises as many questions as he answers.

images created by Google Imagen
images created by Google Imagen

The dark secret behind those cute AI-generated animal images

Google Brain has revealed its own image-making AI, called Imagen. But don't expect to see anything that isn't wholesome.

AGI is just chatter for now concept
AGI is just chatter for now concept

The hype around DeepMind’s new AI model misses what’s actually cool about it

Some worry that the chatter about these tools is doing the whole field a disservice.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.