Skip to Content
Space

The ESA is about to turn one of its spacecraft into a fireball

February 12, 2020
Qarman
QarmanESA

Next week, the European Space Agency is going to jettison a cubesat called Qarman from the International Space Station and watch it burst into a fireball as it reenters Earth’s atmosphere—all on purpose. 

What’s the mission: Qarman (short for “QubeSat for Aerothermodynamic Research and Measurements on Ablation”) is a shoebox-sized experiment meant to help researchers better understand the physics at play when objects plummet into the planet’s atmosphere and burn up. Qarman was brought up to the ISS in December during a cargo resupply mission. On February 17, it will be cast back out into space and begin slowly drifting toward Earth before entering the atmosphere and burning up in about six months. 

Tell me more: Qarman has four solar-cell-covered panels that are designed to increase atmospheric drag and hasten reentry. Its nose is made from a special kind of cork that’s typically used in thermal protection systems on spacecraft. Ground testing shows that when the cork heats up, it chars and flakes away a bit at a time. The Qarman team is interested in learning how this process works during reentry. 

The spacecraft is also armed with several sensors and cameras meant to measure temperature, pressure, and heat flow from the spacecraft as it burns. Some of the instruments are inside a compartment made of ceramic carbon and aerogel meant to survive reentry (although they will not be recovered and will likely be lost at sea).

What’s the point? The data gathered from Qarman’s fiery demise could be used to improve spacecraft shielding. But the bigger goal is to get a better sense of how things burn up during reentry so engineers can help solve the growing problem of orbital debris, a.k.a. space junk—which is only going to get worse as the rate of satellite launches ticks up sharply in the coming decade. Findings from the mission could help build satellites designed to burn up completely upon the end of their useful lifetimes, which would help reduce the amount of junk zipping through orbit. 

Deep Dive

Space

How the James Webb Space Telescope broke the universe

Scientists were in awe of the flood of data that arrived when the new space observatory booted up.

NASA’s return to the moon is off to a rocky start

Artemis aims to deliver astronauts back to the lunar surface by 2025, but it’s riding on an old congressional pet project.

James Webb Space Telescope: 10 Breakthrough Technologies 2023

A marvel of precision engineering, JWST could revolutionize our view of the early universe.

What’s next in space

The moon, private space travel, and the wider solar system will all have major missions over the next 12 months.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.