Skip to Content
MIT News feature

Shafi Goldwasser

The number theory expert who helped revolutionize cryptography
Shafi Goldwasser
Shafi Goldwasser
Shafi GoldwasserWinni Wintermeyer

When Shafi Goldwasser chose to focus on cryptography and algorithmic number theory as a new graduate student in computer science at the University of California, Berkeley, in 1979, her timing was perfect.

In 1977, MIT professors Ronald Rivest, Adi Shamir, and Len Adleman had published the breakthrough RSA public-key encryption algorithm that let people exchange secret information without first meeting in person to set up a shared encryption key. In 1979, they used the ideas in their encryption algorithm to propose a way to play poker over the phone without relaying information through a trusted third party. Their method involved dealing from an encrypted deck, but Berkeley professor Richard Lipton pointed out that partial information about encrypted cards could leak and allow a player to cheat.

So Goldwasser and fellow Berkeley grad student Silvio Micali took up the challenge of how to encrypt in such a way that all partial information would be provably hidden. They introduced the idea of “probabilistic,” or randomized, encryption: every single plaintext message must have many possible encryptions, all equally probable, and the person encrypting the message would choose one. They then showed that it would be impossible to distinguish between two messages encrypted in this way—providing a strong level of security they called “semantic security.” 

The work highlighted a vulnerability in any encryption system—including early versions of RSA—that allowed the same message to always be encrypted the same way, leading to cryptography standards that call for using probabilistic encryption methods to prevent that.

Shaffi Goldwasser

Goldwasser and Micali’s framework has since been widely adopted for evaluating cryptographic systems and creating new ones. And public-key cryptography with randomization eventually became the key to commercializing the internet—it was the only way to send credit card numbers over the internet securely.

Goldwasser and Micali both received faculty appointments at MIT in 1983 and continued their collaboration. Working with Charles Rackoff at the University of Toronto, they developed a new kind of mathematical proof called an interactive proof system, in which a mathematical fact is demonstrated by an interactive dialogue of questions and answers between a prover and a verifier—a mathematical analogue to the game of 20 questions. One such system, called a zero-knowledge proof, has the remarkable property of revealing no information beyond the correctness of the proof itself. Zero-knowledge proofs have been combined with blockchain technologies to create cryptocurrencies that allow transactions to be verified as valid while the details are kept private and anonymity is maintained.

For their work extending the theory of computing and applying it to practical problems in cryptography, Goldwasser and Micali shared the Turing Award, considered the Nobel Prize of computing.

Since 1993, Goldwasser has balanced her MIT faculty appointment (she’s now the RSA Professor of Electrical Engineering and Computer Science) with a second professorship at Israel’s Weizmann Institute of Science. In 2018, she was named director of the interdisciplinary Simons Institute for the Theory of Computing at UC Berkeley as well. Goldwasser is also the cofounder and chief scientist of Duality Technologies, a startup that is commercializing homomorphic cryptography. This new mathematical technology makes it possible to perform machine learning on encrypted data without first decrypting it, which is expected to transform research in medicine, economics, and other privacy-sensitive areas in the coming years.

Keep Reading

Most Popular

wet market selling fish
wet market selling fish

This scientist now believes covid started in Wuhan’s wet market. Here’s why.

How a veteran virologist found fresh evidence to back up the theory that covid jumped from animals to humans in a notorious Chinese market—rather than emerged from a lab leak.

light and shadow on floor
light and shadow on floor

How Facebook and Google fund global misinformation

The tech giants are paying millions of dollars to the operators of clickbait pages, bankrolling the deterioration of information ecosystems around the world.

masked travellers at Heathrow airport
masked travellers at Heathrow airport

We still don’t know enough about the omicron variant to panic

The variant has caused alarm and immediate border shutdowns—but we still don't know how it will respond to vaccines.

This new startup has built a record-breaking 256-qubit quantum computer

QuEra Computing, launched by physicists at Harvard and MIT, is trying a different quantum approach to tackle impossibly hard computational tasks.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.