Skip to Content
Silicon Valley

Google’s algorithm for detecting hate speech is racially biased

August 13, 2019
A man holds a smartphone
A man holds a smartphone
A man holds a smartphoneGetty

AI systems meant to spot abusive online content are far more likely to label tweets “offensive” if they were posted by people who identify as African-American.

The news: Researchers built two AI systems and tested them on a pair of data sets of more than 100,000 tweets that had been annotated by humans with labels like “offensive,” “none,” or “hate speech.” One of the algorithms incorrectly flagged 46% of inoffensive tweets by African-American authors as offensive. Tests on bigger data sets, including one composed of 5.4 million tweets, found that posts by African-American authors were 1.5 times more likely to be labeled as offensive. When the researchers then tested Google’s Perspective, an AI tool that the company lets anyone use to moderate online discussions, they found similar racial biases.

A hard balance to strike: Mass shootings perpetrated by white supremacists in the US and New Zealand have led to growing calls from politicians for social-media platforms to do more to weed out hate speech. These studies underline just how complicated a task that is. Whether language is offensive can depend on who’s saying it, and who’s hearing it. For example, a black person using the “N word” is very different from a white person using it. But AI systems do not, and currently cannot, understand that nuance.

The risk: By rushing to use software to automatically weed out offensive language, we risk silencing minority voices. Moderating online content is a traumatizing, difficult job, so tech companies are keen to rely on AI systems instead of human beings (they’re also much cheaper). This study shows the huge risks inherent in that approach.

Sign up here for our daily newsletter The Download to get your dose of the latest must-read news from the world of emerging tech.

Keep Reading

Most Popular

transplant surgery
transplant surgery

The gene-edited pig heart given to a dying patient was infected with a pig virus

The first transplant of a genetically-modified pig heart into a human may have ended prematurely because of a well-known—and avoidable—risk.

Muhammad bin Salman funds anti-aging research
Muhammad bin Salman funds anti-aging research

Saudi Arabia plans to spend $1 billion a year discovering treatments to slow aging

The oil kingdom fears that its population is aging at an accelerated rate and hopes to test drugs to reverse the problem. First up might be the diabetes drug metformin.

Yann LeCun
Yann LeCun

Yann LeCun has a bold new vision for the future of AI

One of the godfathers of deep learning pulls together old ideas to sketch out a fresh path for AI, but raises as many questions as he answers.

images created by Google Imagen
images created by Google Imagen

The dark secret behind those cute AI-generated animal images

Google Brain has revealed its own image-making AI, called Imagen. But don't expect to see anything that isn't wholesome.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.