Skip to Content
Artificial intelligence

Instead of practicing, this AI mastered chess by reading about it

Machines that appreciate “brilliant” and “dumb” chess moves could learn to play the game—and do other things—more efficiently.
July 31, 2019
A chess board.
A chess board.Unsplash

Chess fans love nothing more than discussing a masterful sacrifice by Bobby Fischer or an ingenious line of attack from current world champion Magnus Carlsen. It turns out that this chatter could help AI programs learn to play the game in a new way. One day, the same technique could allow machines to use the emotional content of our language to master various practical tasks.

The chess algorithm, called SentiMATE, was developed by researchers Nicholas McCarthy, Isaac Kamlish and Isaac Bentata Chocron at University College London. It evaluates the quality of chess moves by analyzing the reaction of expert commentators.

The team analyzed the text of 2,700 chess game commentaries available online. They pruned out commentary that didn’t relate to high-quality moves, and examples that were too ambiguous. Then they used a special type of recurrent neural network and word embeddings (a mathematical technique that connects words on the basis their meanings), trained on another state-of-the-art model for analyzing language.

AI has recently made significant progress in parsing language. For example, an algorithm developed by researchers at OpenAI, a research company in San Francisco, proved capable of generating whole news stories from a prompt of a few words.

“The next step in the advancement of natural language processing is to convert this learnt information into tangible actions to help solve real-world tasks,” the researchers said in an email to MIT Technology Review. “We felt that learning strategy from text-based data could be a very important research avenue to explore.”  

SentiMATE surprised the researchers with its ability to work out some of the basic tenets of chess as well as several key strategies, such as forking (when two or more pieces are simultaneously threatened) and castling (when the king and castle both move to a more defensive position on the back of the board).

It was hardly an AI grandmaster: it failed to beat some conventional chess bots consistently. But the program demonstrates the promise of using language to help figure out how to play the game well, with less practice data and less computer power than conventional approaches require.

Chess has long been a benchmark of progress in machine intelligence, from Alan Turing’s 1951 program for playing the game (written on paper) through Garry Kasparov’s defeat at the hands of IBM’s Deep Blue.

More recently, the Alphabet subsidiary DeepMind demonstrated a chess variant of AlphaGo, the program capable of teaching itself to play the ancient Chinese board game Go. This program, known as AlphaZero, was given the rules of the game and then honed its skill by playing against other versions of itself. Because it taught itself, AlphaZero developed some unusual and surprising strategies. But like Deep Blue, AlphaZero needed thousands of Google’s specialized Tensor Processing Unit (TPU) chips, as well as the data from millions of practice games.

The researchers say the learning techniques used by SentiMATE could have many other practical applications beyond chess. For instance, they might help machines analyze sports, predict financial activity, and make better recommendations. “There is an abundance of books, blogs and papers all waiting to be learnt from,” the team points out.

Deep Dive

Artificial intelligence

This new data poisoning tool lets artists fight back against generative AI

The tool, called Nightshade, messes up training data in ways that could cause serious damage to image-generating AI models. 

Rogue superintelligence and merging with machines: Inside the mind of OpenAI’s chief scientist

An exclusive conversation with Ilya Sutskever on his fears for the future of AI and why they’ve made him change the focus of his life’s work.

Unpacking the hype around OpenAI’s rumored new Q* model

If OpenAI's new model can solve grade-school math, it could pave the way for more powerful systems.

Generative AI deployment: Strategies for smooth scaling

Our global poll examines key decision points for putting AI to use in the enterprise.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at with a list of newsletters you’d like to receive.