Skip to Content
Artificial intelligence

Hackers trick a Tesla into veering into the wrong lane

April 1, 2019

Hackers have demonstrated some worrisome ways to manipulate and confuse the various systems on a Tesla Model S. Their most dramatic feat: sending the car careening into the oncoming traffic lane by placing a series of small stickers on the road.

Attack vector: This an example of an “adversarial attack,” a way of manipulating a machine-learning model by feeding in a specially crafted input. Adversarial attacks could become more common as machine learning is used more widely, especially in areas like network security.

Blurred lines: Tesla’s Autopilot is vulnerable because it recognizes lanes using computer vision. In other words, the system relies on camera data, analyzed by a neural network, to tell the vehicle how to keep centered within its lane.

Traffic jamming: This isn’t the first adversarial attack on an autonomous driving system. Dawn Song, a professor at UC Berkeley, has used innocuous-looking stickers to trick a self-driving car into thinking a stop sign was a speed limit for 45 miles per hour. Another study, published in March, demonstrated how medical machine-learning systems can similarly be tricked into giving the wrong diagnoses.

Bug fixes: The researchers behind the lane-recognition hack, from the Keen Security Lab of Chinese tech giant Tencent, used a similar attack to disrupt the vehicle’s automatic windshield wipers. They also hijacked the car’s steering wheel using another method. A Tesla spokesperson told Forbes that the latter vulnerability has been fixed in its most recent software update. The spokesperson said the adversarial attack was unrealistic “given that a driver can easily override Autopilot at any time.”

Deep Dive

Artificial intelligence

Why Meta’s latest large language model survived only three days online

Galactica was supposed to help scientists. Instead, it mindlessly spat out biased and incorrect nonsense.

DeepMind’s game-playing AI has beaten a 50-year-old record in computer science

The new version of AlphaZero discovered a faster way to do matrix multiplication, a core problem in computing that affects thousands of everyday computer tasks.

A bot that watched 70,000 hours of Minecraft could unlock AI’s next big thing

Online videos are a vast and untapped source of training data—and OpenAI says it has a new way to use it.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.