Skip to Content
77 Mass Ave

Revealing the invisible

A new neural network developed by MIT engineers spies transparent objects in the dark.
February 27, 2019
Courtesy of the researchers

Small imperfections in a wine glass or tiny creases in a contact lens can be tricky to make out, even in good light. But MIT engineers have developed a machine-learning technique that can reveal these “invisible” features and objects in the dark.

The key was a neural network, a type of software that can be trained to associate certain inputs with specific outputs—in this case, dark, grainy images of transparent objects and the objects themselves.

The team fed the network extremely grainy images of more than 10,000 transparent etching patterns from integrated circuits. The images were taken in very low lighting conditions, with about one photon per pixel—far less light than a camera would register in a dark, sealed room. Then they showed the neural network a new grainy image, not included in the training data, and found that it was able to reconstruct the transparent object that the darkness had obscured.

The researchers set their camera to take images slightly out of focus, which provides evidence, in the form of ripples in the detected light, that a transparent object may be present.

But defocusing also creates blur, which can muddy a neural network’s computations. To produce a sharper, more accurate image, the researchers incorporated into the neural network a law in physics that describes how light creates a blurring effect when a camera is defocused.

The team repeated their experiments with another 10,000 images of more general and varied objects, including people, places, and animals. Again, the neural network with the embedded physics algorithm was able to re-create an image of a transparent etching that had been taken in the dark.

The results demonstrate that neural networks may be used to illuminate transparent features, such as biological tissues and cells, in images taken with very little light.

“If you blast biological cells with light, you burn them, and there is nothing left to image,” says George Barbastathis, a professor of mechanical engineering. “If you expose a patient to x-rays, you increase the danger they may get cancer.

What we’re doing here [means] you can get the same image quality, but with a lower exposure to the patient. And in biology, you can reduce the damage to biological specimens when you want to sample them.”

Keep Reading

Most Popular

A Roomba recorded a woman on the toilet. How did screenshots end up on Facebook?

Robot vacuum companies say your images are safe, but a sprawling global supply chain for data from our devices creates risk.

A startup says it’s begun releasing particles into the atmosphere, in an effort to tweak the climate

Make Sunsets is already attempting to earn revenue for geoengineering, a move likely to provoke widespread criticism.

10 Breakthrough Technologies 2023

Every year, we pick the 10 technologies that matter the most right now. We look for advances that will have a big impact on our lives and break down why they matter.

These exclusive satellite images show that Saudi Arabia’s sci-fi megacity is well underway

Weirdly, any recent work on The Line doesn’t show up on Google Maps. But we got the images anyway.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.