Sponsored
From innovation to monetization: The economics of data-driven transformation

In association withHitachi Vantara
Across industries, for companies large and small, vast new data streams are now the guiding force behind new revenue opportunities and the catalyst for dramatic operational makeovers. In a Midwestern field, for example, a moisture and soil temperature sensor network helps farmers reap data-driven insights that drive better decisions on everything from seed selection to crop yield. In a congested city, a transportation provider taps telematics data and predictive analytics to assess and remap routes, saving millions of gallons of fuel, cutting hundreds of metric tons of carbon dioxide emissions, and shaving off hundreds of millions of dollars in costs.
From innovation to monetization: The economics of data-driven transformation
While there’s no question that big data is the key to business success in the analytics-driven future, the sheer volume of data collected is not the defining competitive differentiator— rather, it’s what companies do with that data that determines whether they win or lose.
To capitalize on the promise of data-driven innovation—whether the goal is increasing productivity or monetizing new products and services—companies first need to build the proper foundation, which includes establishing processes and policies for gathering, cleansing, organizing, and accessing their data.
To ensure that organizations harvest the most value from their data, the processes must be adaptable to changing needs and able to create a data pipeline that places a premium on analytics.
To download the full executive brief click here.
Deep Dive
Uncategorized
The Download: how to fight pandemics, and a top scientist turned-advisor
Plus: Humane's Ai Pin has been unveiled
The race to destroy PFAS, the forever chemicals
Scientists are showing these damaging compounds can be beat.
How scientists are being squeezed to take sides in the conflict between Israel and Palestine
Tensions over the war are flaring on social media—with real-life ramifications.
Capitalizing on machine learning with collaborative, structured enterprise tooling teams
Machine learning advances require an evolution of processes, tooling, and operations.
Stay connected
Get the latest updates from
MIT Technology Review
Discover special offers, top stories, upcoming events, and more.