Skip to Content

The computational future awaits

Computational thinking and the tools of machine learning will soon be as fundamental as math competence.

August 22, 2018
A photo of MIT president L. Rafael Reif in his office
A photo of MIT president L. Rafael Reif in his office
A photo of MIT president L. Rafael Reif in his officeSimon Simard

As every MIT faculty member knows, the best way to find the path to the future is to follow our students. So I want to share a vivid map our students are drawing through their cumulative academic choices—a map in which computation seems to be everywhere.

A few numbers will help make this real. In 2017, 91 percent of graduating seniors completed a class in computational thinking, and 56 percent of MIT undergraduates took one in computer science. Classes in artificial intelligence are the most popular on campus.

Perhaps even more indicative of the rise of computation across disciplines is that about 40 percent of our undergraduates are majoring in a course “with computing.” The obvious ones are 6.2 and 6.3—Electrical Engineering and Computer Science, and Computer Science and Engineering. But every year seems to bring new options for “CS plus something”—such as CS plus mathematics, CS plus molecular biology, CS plus economics and data science, and most recently, CS plus urban science and planning. There’s also talk about a future major in CS plus brain and cognitive sciences. And since a CS minor was made available two years ago, many other students have chosen that option to satisfy their computation appetite.

The student demand reflects what today’s employers are demanding, too—in every industry and sector. Handling computational thinking and using the tools of machine learning seem to be fundamental skills for this generation, as essential as competence in math.

Though not entirely unexpected, the student interest has caught our attention. It is intense, pervasive, and growing. And responding to it as educators will require some significant adjustment.

Because this is MIT, I know that you expect us not only to respond but to lead. So I hope you will stay tuned as we help our students master the intellectual tools they’ll need to invent the future.

Keep Reading

Most Popular

AV2.0 autonomous vehicles adapt to unknown road conditions concept
AV2.0 autonomous vehicles adapt to unknown road conditions concept

The big new idea for making self-driving cars that can go anywhere

The mainstream approach to driverless cars is slow and difficult. These startups think going all-in on AI will get there faster.

biomass with Charm mobile unit in background
biomass with Charm mobile unit in background

Inside Charm Industrial’s big bet on corn stalks for carbon removal

The startup used plant matter and bio-oil to sequester thousands of tons of carbon. The question now is how reliable, scalable, and economical this approach will prove.

AGI is just chatter for now concept
AGI is just chatter for now concept

The hype around DeepMind’s new AI model misses what’s actually cool about it

Some worry that the chatter about these tools is doing the whole field a disservice.

images created by Google Imagen
images created by Google Imagen

The dark secret behind those cute AI-generated animal images

Google Brain has revealed its own image-making AI, called Imagen. But don't expect to see anything that isn't wholesome.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.