Skip to Content
Artificial intelligence

AI could get 100 times more energy-efficient with IBM’s new artificial synapses

Copying the features of a neural network in silicon might make machine learning more usable on small devices like smartphones.
June 12, 2018
MNIST handwriting dataset

Neural networks are the crown jewel of the AI boom. They gorge on data and do things like transcribe speech or describe images with near-perfect accuracy (see “10 breakthrough technologies 2013: Deep learning”).

The catch is that neural nets, which are modeled loosely on the structure of the human brain, are typically constructed in software rather than hardware, and the software runs on conventional computer chips. That slows things down.

IBM has now shown that building key features of a neural net directly in silicon can make it 100 times more efficient. Chips built this way might turbocharge machine learning in coming years.

The IBM chip, like a neural net written in software, mimics the synapses that connect individual neurons in a brain. The strength of these synaptic connections needs to be tuned in order for the network to learn. In a living brain, this happens in the form of connections growing or withering over time. That is easy to reproduce in software but has proved infuriatingly difficult to achieve with hardware, until now.

The IBM researchers demonstrate the microelectronic synapses in a research paper published in the journal Nature. Their approach takes inspiration from neuroscience by using two types of synapses: short-term ones for computation and long-term ones for memory. This method “addresses a few key issues,” most notably low accuracy, that have bedeviled previous efforts to build artificial neural networks in silicon, says Michael Schneider, a researcher at that National Institute of Standards and Technology who is researching neurologically inspired computer hardware.

The researchers tested a neural network built from the components of two simple image-recognition tasks: handwriting and color image classification. They found the system to be as accurate as a software-based deep neural network even though it consumed only 1 percent as much energy. 

The discovery isn’t only important for AI. If it scales to commercial production, it could vindicate a big bet IBM has been making. Although the company doesn’t sell computer chips these days, it has been investing in efforts to reinvent computer hardware, hoping that fundamentally new types of microelectronic components might help provide impetus for the next big advances. This new technique could be a first step, making machine learning more efficient and easier to deploy on small devices like smartphones.

“A factor of 100 in energy efficiency and in training speed for fully connected layers certainly seems worth further effort,” says Schneider. Not everyone is convinced, however. Kwabena Boahen, who researches computer architectures at Stanford, says the work reminds him of the hype surrounding “memristors,” a tunable type of transistor somewhat analogous to a synapse, which has been underdevelopment for over a decade

The design of IBM’s chips is also still relatively clunky, consisting of five transistors and three other components where there would be a single transistor on a normal chip. Some aspects of the system, moreover, have so far been tested only in simulation, a common technique for validating microchip designs. IBM will still need to build and test a complete chip. Nevertheless, the work may be a significant, biologically inspired step toward a computer with AI logic burned into its core.

Deep Dive

Artificial intelligence

AI for everything: 10 Breakthrough Technologies 2024

Generative AI tools like ChatGPT reached mass adoption in record time, and reset the course of an entire industry.

What’s next for AI in 2024

Our writers look at the four hot trends to watch out for this year

OpenAI teases an amazing new generative video model called Sora

The firm is sharing Sora with a small group of safety testers but the rest of us will have to wait to learn more.

Google’s Gemini is now in everything. Here’s how you can try it out.

Gmail, Docs, and more will now come with Gemini baked in. But Europeans will have to wait before they can download the app.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at with a list of newsletters you’d like to receive.