Skip to Content
Artificial intelligence

Google x-ray project shows AI won’t replace doctors any time soon

Research from Google Cloud finds that applying AI to medicine is tricky.
March 27, 2018
Jeremy Portje

Artificial intelligence looks certain to revolutionize medicine, but research from Google Cloud suggests it may be more challenging than many people suspect. 

Jia Li, who leads research and development at Google Cloud, revealed new research on applying AI to radiology imaging today at EmTech Digital, a conference in San Francisco held by MIT Technology Review.

The work, described in a paper published online, shows that machine learning could help identify disease in a real clinical setting, where data is sparse and where doctors require a rationale for diagnosis. Some AI experts have suggested that whole areas of medical work, such as analyzing radiological images, could become entirely automated thanks to AI. 

Li and colleagues used deep learning, a popular machine-learning technique, to identify abnormalities in chest x-rays. Because they had only a small training data set to work with, they used another data set to bootstrap the learning process. They also ensured that their method highlighted the area of an image that was critical to a diagnosing an abnormality. This is important because deep learning is so mathematically complex that it is inherently opaque (see “The dark secret at the heart of AI”).

Li, who is working with medical experts at Stanford, also says that AI can automate only a small part of radiologists’ work. They need to understand a patient’s specific case history, communicate a diagnosis, and determine the right treatment, she says, and they will play a key role in developing accurate and effective machine-learning systems.

So Li believes doctors will not be wholly replaced by AI any time soon. “We can assist [doctors] to make better judgments, and make the process more efficient,” she told the EmTech audience.

The work is important because it highlights and seeks to address key challenges in applying AI to real-world medical situations. Most demonstrations of AI for medicine have involved large, perfectly annotated data sets, and they have not considered the broader context. 

The research also suggests that medicine may be a major focus for Google’s cloud platform. Google and others believe that delivering AI through the cloud will be a big, lucrative trend in computing in coming years (see “How the cloud could produce the richest companies ever”).

Researchers like Li also present the technology as a way of “democratizing AI,” or making the technology available to those who don’t have AI training. “Hopefully, experts will spend less time on repetitive tasks,” she said. 

 

 

Deep Dive

Artificial intelligence

chasm concept
chasm concept

Artificial intelligence is creating a new colonial world order

An MIT Technology Review series investigates how AI is enriching a powerful few by dispossessing communities that have been dispossessed before.

open sourcing language models concept
open sourcing language models concept

Meta has built a massive new language AI—and it’s giving it away for free

Facebook’s parent company is inviting researchers to pore over and pick apart the flaws in its version of GPT-3

spaceman on a horse generated by DALL-E
spaceman on a horse generated by DALL-E

This horse-riding astronaut is a milestone in AI’s journey to make sense of the world

OpenAI’s latest picture-making AI is amazing—but raises questions about what we mean by intelligence.

labor exploitation concept
labor exploitation concept

How the AI industry profits from catastrophe

As the demand for data labeling exploded, an economic catastrophe turned Venezuela into ground zero for a new model of labor exploitation.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.