Skip to Content
Artificial intelligence

AI is learning how to spot risky websites for you

February 22, 2018

Machine learning can sniff out tell-tale signs of shady URLs so you don’t get phished.

The problem: The internet is riddled with websites set up for the sole purpose of stealing a user’s information or installing malware on a victim’s machine. Antivirus companies blacklist them as fast as they can, but with new sites launched every day, it’s a Sisyphean effort to keep up.

AI to the rescue: A new system called URLNet uses neural networks that look at character-level and word-level combinations in—you guessed it—the site’s URL to detect a site’s risk. URLs contain clues to whether a site is malicious, like length and misspelled domain names. 

Results: The researchers trained URLNet on two data sets, one containing a million legit and malicious URLs and one with five million. In each case, URLNet beat other current systems at detecting suspicious sites.

Deep Dive

Artificial intelligence

A Roomba recorded a woman on the toilet. How did screenshots end up on Facebook?

Robot vacuum companies say your images are safe, but a sprawling global supply chain for data from our devices creates risk.

The viral AI avatar app Lensa undressed me—without my consent

My avatars were cartoonishly pornified, while my male colleagues got to be astronauts, explorers, and inventors.

Roomba testers feel misled after intimate images ended up on Facebook

An MIT Technology Review investigation recently revealed how images of a minor and a tester on the toilet ended up on social media. iRobot said it had consent to collect this kind of data from inside homes—but participants say otherwise.

How to spot AI-generated text

The internet is increasingly awash with text written by AI software. We need new tools to detect it.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at with a list of newsletters you’d like to receive.