DeepMind’s latest AI transfers its learning to new tasks
By using insights from one job to help it do another, a successful new artificial intelligence hints at a more versatile future for machine learning.
Backstory: Most algorithms can be trained in only one domain, and can’t use what’s been learned for one task to perform another, new one. A big hope for AI is to have systems take insights from one setting and apply them elsewhere—what’s called transfer learning.
What’s new: DeepMind built a new AI system called IMPALA that simultaneously performs multiple tasks—in this case, playing 57 Atari games—and attempts to share learning between them. It showed signs of transferring what was learned from one game to another.
Why it matters: IMPALA was 10 times more data-efficient than a similar AI and achieved double the final score. That’s a promising hint that transfer learning is plausible. Plus, a system like this that learns using less processing power could help speed up training of different types of AI.
Deep Dive
Artificial intelligence
The inside story of how ChatGPT was built from the people who made it
Exclusive conversations that take us behind the scenes of a cultural phenomenon.
AI is dreaming up drugs that no one has ever seen. Now we’ve got to see if they work.
AI automation throughout the drug development pipeline is opening up the possibility of faster, cheaper pharmaceuticals.
The original startup behind Stable Diffusion has launched a generative AI for video
Runway’s new model, called Gen-1, can change the visual style of existing videos and movies.
GPT-4 is bigger and better than ChatGPT—but OpenAI won’t say why
We got a first look at the much-anticipated big new language model from OpenAI. But this time how it works is even more deeply under wraps.
Stay connected
Get the latest updates from
MIT Technology Review
Discover special offers, top stories, upcoming events, and more.