An artificial synapse could make brain-on-a-chip hardware a reality
Background: Neuromorphic computer chips are designed to work like the human brain. Instead of being controlled by binary, on-or-off signals like most current chips, neuromorphic chips weight their outputs, mimicking the way different neurons fire at different strengths through their synapses.
What’s new: Artificial synapses have proved tricky to create. But MIT researchers now say they can precisely control one that can be used to train neural networks. What’s more, they’ve used the design to build a chip of synapses, and they’ve found that it’s able to recognize handwriting samples with 95 percent accuracy.
What it means: Artificial neural networks are already loosely modeled on the brain. The combination of neural nets and neuromorphic chips could let AI systems be packed into smaller devices and run a lot more efficiently.
Deep Dive
Artificial intelligence

Meta has built a massive new language AI—and it’s giving it away for free
Facebook’s parent company is inviting researchers to pore over and pick apart the flaws in its version of GPT-3

Yann LeCun has a bold new vision for the future of AI
One of the godfathers of deep learning pulls together old ideas to sketch out a fresh path for AI, but raises as many questions as he answers.

The dark secret behind those cute AI-generated animal images
Google Brain has revealed its own image-making AI, called Imagen. But don't expect to see anything that isn't wholesome.

The hype around DeepMind’s new AI model misses what’s actually cool about it
Some worry that the chatter about these tools is doing the whole field a disservice.
Stay connected

Get the latest updates from
MIT Technology Review
Discover special offers, top stories, upcoming events, and more.