Skip to Content

Sponsored

An Interactive Whitepaper: Continuous engineering for the Internet of Things

Adapt time-tested methods to meet new engineering challenges
November 14, 2017

Provided byIBM

The hype around the Internet of Things is now rapidly giving way to the reality of implemented products and services.

Analyst firm IDC predicts that the worldwide IoT market spend will grow from approximately USD 690 billion in 2015 to USD 1.46 trillion in 2020 with a compound annual growth rate of 16.1 percent. The installed base of IoT endpoints will grow from 12.1 billion in 2015, exceeding 30 billion in 2020.

Connectivity has moved from being an interesting feature to being a so-called “price of entry” requirement to achieve competitive product value and differentiation in many of today’s markets. IoT products and services can range from the basic to the critical: cost-critical, availability-critical, brand-critical, even safety-critical. Therefore, the makers of products and services must understand and respond appropriately to the challenges of engineering for the IoT.

As connectivity increases the capabilities of IoT products and services, so it also increases their complexity. New capabilities bring new failure modes. Added complexity—unless managed appropriately—can increase the likelihood of failures occurring. Furthermore, the consequences of failure can themselves be hard to predict.

Therefore, increasingly critical products and services require robust IoT engineering. The primary challenges include:

  • Delivering compelling functionality (where the requirements might be continuously changing)
  • Delivering appropriate dependability, in the form of safety (freedom from harm), reliability (availability of services) and security (freedom from intrusion, interference or theft)
  • Delivering the solution in an open context—where some of the technologies and components that contribute to the solution are not under direct commercial or engineering control
  • Delivering the solution with appropriate speed and at appropriate cost to respond to competitive threats and changing market demand

Download the full white paper today<

Keep Reading

Most Popular

The Steiner tree problem:  Connect a set of points with line segments of minimum total length.
The Steiner tree problem:  Connect a set of points with line segments of minimum total length.

The 50-year-old problem that eludes theoretical computer science

A solution to P vs NP could unlock countless computational problems—or keep them forever out of reach.

section of Rima Sharp captured by the LRO
section of Rima Sharp captured by the LRO

The moon didn’t die as early as we thought

Samples from China’s lunar lander could change everything we know about the moon’s volcanic record.

conceptual illustration of a heart with an arrow going in on one side and a cursor coming out on the other
conceptual illustration of a heart with an arrow going in on one side and a cursor coming out on the other

Forget dating apps: Here’s how the net’s newest matchmakers help you find love

Fed up with apps, people looking for romance are finding inspiration on Twitter, TikTok—and even email newsletters.

ASML machine
ASML machine

Inside the machine that saved Moore’s Law

The Dutch firm ASML spent $9 billion and 17 years developing a way to keep making denser computer chips.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.