Skip to Content
77 Mass Ave

Wire-Free Snooze Patrol

Sleep-monitoring technology that doesn’t interfere with sleep.
October 24, 2017
Gizem Vural

More than 50 million Americans suffer from sleep disorders, and diseases including Parkinson’s and Alzheimer’s can also disrupt sleep. Diagnosing and monitoring these conditions usually requires attaching electrodes and a variety of other sensors to patients, which can interrupt their sleep even more.

To make it easier to diagnose and study sleep problems, researchers at MIT and Massachusetts General Hospital have devised a new way to monitor sleep stages without sensors attached to the body. Their device uses an advanced artificial-intelligence algorithm to analyze the radio signals around the person and translate those measurements into sleep stages: light, deep, or rapid eye movement (REM).

“Imagine if your Wi-Fi router knows when you are dreaming and can monitor whether you are having enough deep sleep, which is necessary for memory consolidation,” says Dina Katabi, a professor of electrical engineering and computer science, who led a study on the technique presented at the International Conference on Machine Learning in August. “Our vision is developing health sensors that will disappear into the background and capture physiological signals and important health metrics, without asking the user to change her behavior in any way.”

Katabi and members of her group in MIT’s Computer Science and Artificial Intelligence Laboratory had previously developed radio-based sensors that can remotely measure indicators of health. These sensors consist of a wireless device, about the size of a laptop computer, that emits low-power radio frequency signals. As the radio waves reflect off the body, any slight body movements alter their frequency. Analyzing those reflected waves can reveal vital signs such as pulse and breathing rate.

She thought that a similar approach could be useful for monitoring sleep, which is currently done while patients spend the night in a sleep lab hooked up to monitors such as electroencephalography (EEG) machines.

The researchers devised a way to translate their measurements of pulse, breathing rate, and movement into sleep stages by taking advantage of recent advances in artificial intelligence—specifically, computer algorithms known as deep neural networks, which can extract and analyze information from complex data sets.

Using this approach in tests of 25 healthy volunteers, the researchers found that their technique was about 80 percent accurate, which is comparable to the accuracy of ratings determined by sleep specialists based on EEG measurements.

“The opportunity is very big, because we don’t understand sleep well, and a high fraction of the population has sleep problems,” says Mingmin Zhao, an MIT graduate student who is the study’s lead author. “We have this technology that, if we can make it work, can move us from a world where we do sleep studies once every few months in the sleep lab to continuous sleep studies in the home.”

Keep Reading

Most Popular

A view of clouds illuminated by sunlight
A view of clouds illuminated by sunlight

We can’t afford to stop solar geoengineering research

It is the wrong time to take this strategy for combating climate change off the table.

conceptual illustration showing various women's faces being scanned
conceptual illustration showing various women's faces being scanned

A horrifying new AI app swaps women into porn videos with a click

Deepfake researchers have long feared the day this would arrive.

Death and Jeff Bezos
Death and Jeff Bezos

Meet Altos Labs, Silicon Valley’s latest wild bet on living forever

Funders of a deep-pocketed new "rejuvenation" startup are said to include Jeff Bezos and Yuri Milner.

ai learning to multitask concept
ai learning to multitask concept

Meta’s new learning algorithm can teach AI to multi-task

The single technique for teaching neural networks multiple skills is a step towards general-purpose AI.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.