Skip to Content

Ceramic Pump That Takes the Heat Promises Cheap, Efficient Grid Storage

It can operate at a record 1,400 ˚C, enabling the use of liquid metals for thermal storage.
October 11, 2017
Christopher Moore, Georgia Tech

Scientists have developed a ceramic pump that can operate at 1,400 ˚C, several hundred degrees hotter than existing heat transfer systems, opening up significant new possibilities for energy storage.

Specifically, the authors of the new study, published in the journal Nature on Wednesday, believe it could be used to develop an efficient grid storage system that could eventually help make renewable sources like wind and solar as cheap and reliable as natural-gas plants (see “Serial Battery Entrepreneur’s New Venture Tackles Clean Energy’s Biggest Problem”).

The thermal storage system in question would use liquid metals like molten silicon, which would enable the storage and transfer of heat energy at far higher temperatures than materials typically used, such as molten salts. Higher temperatures mean that more thermal energy can be converted to mechanical or electrical energy, improving overall efficiency.

“This is enabling us to now move heat around at extremely high temperatures,” says Asegun Henry, an assistant professor at the Georgia Institute of Technology. “It’s a step change in terms of what you can do.”

Interest in using liquid metals as a heat storage medium has been growing, but the challenge has been developing pumps and pipes that don’t deteriorate under such conditions. Ceramics can withstand incredibly high temperatures, but they’re also brittle, which makes them difficult materials for creating machine components. 

The researchers at Georgia Tech, along with collaborators at Stanford and Purdue, got around this limitation by taking advantage of new composite materials, along with diamond tooling and precision machining. They also employed seals made from graphite, another material that stands up to very high temperatures.

Molten tin flows at 1,400 ˚C in a Georgia Tech laboratory.

The prototype mechanical pump successfully operated for 72 hours straight using molten tin, at average temperatures of around 1,200 ˚C and a peak temperature of 1,400 ˚C. The pump did show signs of wear after the tests. But as a next research step, the scientists are developing a pump made from silicon carbide, a harder ceramic material that should be able to last much longer.

The research was backed by $3.6 million in funding from ARPA-E, the U.S. Department of Energy’s moonshot energy research division.

The proposed grid storage system would use electricity from solar, wind, or nuclear power to heat liquid silicon to very high temperatures, creating thermal energy. At times of high demand and low energy production, such as evenings after the sun has gone down, the system would return that energy back to the grid using thermophotovoltaics, a type of cell that can convert heat in the form of infrared light into electricity (see “Hot Solar Cells”).

The so-called thermal energy grid storage (TEGS) system would work just as well with coal or natural gas. But the promise here is that the technology could offer a form of cheap baseload storage for renewables, storing up enough energy when the sun is shining and wind is blowing to continue producing electricity even when they’re not.

To date, the contribution that clean energy sources can make has been limited by the high cost of battery systems and the restricted geography of storage systems like pumped hydroelectric.

The liquid metals that the high-temperature pump makes usable have other potential applications as well. They might replace molten salts in concentrated solar power systems, and they could enable new kinds of metal-cooled nuclear reactors (see “Making Sense of Trump’s Surprising Investment in Solar”).

Keep Reading

Most Popular

A Roomba recorded a woman on the toilet. How did screenshots end up on Facebook?

Robot vacuum companies say your images are safe, but a sprawling global supply chain for data from our devices creates risk.

A startup says it’s begun releasing particles into the atmosphere, in an effort to tweak the climate

Make Sunsets is already attempting to earn revenue for geoengineering, a move likely to provoke widespread criticism.

10 Breakthrough Technologies 2023

Every year, we pick the 10 technologies that matter the most right now. We look for advances that will have a big impact on our lives and break down why they matter.

These exclusive satellite images show that Saudi Arabia’s sci-fi megacity is well underway

Weirdly, any recent work on The Line doesn’t show up on Google Maps. But we got the images anyway.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at with a list of newsletters you’d like to receive.