Skip to Content
Uncategorized

AI Learns Sexism Just by Studying Photographs

August 21, 2017

“Spoon” is to “woman” as “tennis racket” is to “man.” At least, that’s according to AI algorithms trained on two of the more common collections of thousands of images that are usually used by researchers to help machines understand the real world.

Wired reports that a team of researchers from the University of Washington studied gender predictions made by computer vision algorithms. What’s particularly interesting is that biases present in image sets—such as the fact that women were 33 percent more likely to appear in a photograph related to cooking in one data batch it studied—are amplified in the connections that the AI’s neural network makes. So, trained on that data set, an AI was 68 percent more likely to predict a woman was cooking, and did so even when an image was clearly of a balding man in a kitchen.

It’s by no means the first time that an AI has been observed to pick up gender biases from training data. Last year, we reported that researchers from Boston University and Microsoft Research found that an AI trained on archives of text learned to associate the word “programmer” with the word “man,” and “homemaker” with the word “woman.”

But it’s especially troubling that biases inherent in data sets may end up being amplified, rather than merely replicated, by the AIs that are trained on them. Sometimes it might cause offense, if, for instance, an AI is being used to target advertising based on images you upload to a social network. But in other applications—such as, say, the controversial practice of predicting criminality from a person’s face—baked-in prejudice could be downright harmful.

Currently, many of the companies developing AI don’t seem too bothered about the problem of bias in their neural networks. This finding is another piece of evidence to support those who argue that that needs to change.

Deep Dive

Uncategorized

stock art of market data
stock art of market data

Maximize business value with data-driven strategies

Every organization is now collecting data, but few are truly data driven. Here are five ways data can transform your business.

Mifiprex pill
Mifiprex pill

Where to get abortion pills and how to use them

New US restrictions could turn abortion into do-it-yourself medicine, but there might be legal risks.

image of library due date card on fire over black background
image of library due date card on fire over black background

The book ban movement has a chilling new tactic: harassing teachers on social media

Educators who stand up to conservative activists are being harassed and called “groomers” online, turning them into potential targets for real-world violence.

two images made by DALL-E 2
two images made by DALL-E 2

OpenAI is ready to sell DALL-E to its first million customers

But the company has had to rush out fixes to the image-making model’s worst flaws to do so.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.