Amazon’s New Robo-Picker Champion Is Proudly Inhuman

A robot that owes rather a lot to an annoying arcade game has captured victory in Amazon’s annual Robotics Challenge.
E-commerce companies like Amazon and Ocado, the world’s largest online-only grocery retailer, currently boast some of the most heavily automated warehouses in the world. But items for customers’ orders aren’t picked by robots, because machines cannot yet reliably grasp a wide range of different objects.
That’s why Amazon gathers together researchers each year to test out machines that pick and stow objects. It’s a tough job, but one that could ultimately help the company to fully automate its warehouses. This year the task was made even harder than usual: teams had only 30 minutes for their robots to familiarize themselves with the objects before trying to pick them out of a jumble of items. That, says Amazon, is supposed to better simulate warehouse conditions, where new stock is arriving all the time and pallets may not be neatly organized.
The winner, a robot called Cartman, was built by the Australian Centre for Robotic Vision. Unlike many competitors, which used robot arms to carry out the tasks, Cartman is distinctly inhuman, with its grippers moving in 3-D along straight lines like an arcade claw crane. But it works far, far better. According to Anton Milan, one of Cartman’s creators, the device’s computer-vision systems were crucial to the victory. “One feature of our system was that it worked off a very small amount of hand annotated training data,” he explained to TechAU. “We only needed just seven images of each unseen item for us to be able to detect them.”
That kind of fast learning is a huge area of research for machine learning experts. Last year, DeepMind showed off a so-called “one-shot” learning system, that can identify objects in a image after having only seen them once before. But the need to identify objects that are obscured by other items and pick them up means that Cartman needs a little more data than that.
(Read more: TechAU, “Robot, Get the Fork Out of My Sink,” “Machines Can Now Recognize Something After Seeing It Once,” “Inside Amazon”)
Keep Reading
Most Popular
This new data poisoning tool lets artists fight back against generative AI
The tool, called Nightshade, messes up training data in ways that could cause serious damage to image-generating AI models.
Rogue superintelligence and merging with machines: Inside the mind of OpenAI’s chief scientist
An exclusive conversation with Ilya Sutskever on his fears for the future of AI and why they’ve made him change the focus of his life’s work.
Data analytics reveal real business value
Sophisticated analytics tools mine insights from data, optimizing operational processes across the enterprise.
Driving companywide efficiencies with AI
Advanced AI and ML capabilities revolutionize how administrative and operations tasks are done.
Stay connected
Get the latest updates from
MIT Technology Review
Discover special offers, top stories, upcoming events, and more.