Skip to Content

3-D-Printed Artificial Heart Beats Like the Real Thing But Isn’t Much Use Yet

It pumps blood using ventricles like those of a real heart, but it begins to degrade after just 3,000 beats.

It looks like a real heart. It moves like a real heart. And while it won’t be taking over the job of a real heart any time soon, it does hint at a future of smaller and more human-like artificial organs.

This new silicone heart was developed by researchers at the Functional Materials Laboratory at ETH Zurich in Switzerland. It’s built using 3-D printing techniques, which are increasingly popular for creating synthetic organs, in order to create an internal structure that mimics that of a real human heart, with right and left ventricles.

Unlike the real thing, though, it also includes a central chamber that can be inflated and deflated by an external pump—essentially acting as the muscle. But there’s a bigger limitation than its need for external drive. As the team reports in the journal Artificial Organs, the silicone begins to degrade after 3,000 beats—equivalent to about 45 minutes, which would make it little use in practice.

Even so, the device does suggest that it might be possible to create better artificial hearts in the coming years. Most current devices use mechanical approaches to pump blood, which can develop faults and can damage the blood they’re pumping. An artificial heart more closely based on human physiology could overcome those issues.

Then again, the best alternative might be to build whole new biological organs from scratch in the lab—but that’s still a little way off yet.

(Read more: Artificial Organs, “3-D-Printed Skin Leads the Way Toward Artificial Organs,”  “Could We Make New Organs?”)

Keep Reading

Most Popular

The Steiner tree problem:  Connect a set of points with line segments of minimum total length.
The Steiner tree problem:  Connect a set of points with line segments of minimum total length.

The 50-year-old problem that eludes theoretical computer science

A solution to P vs NP could unlock countless computational problems—or keep them forever out of reach.

section of Rima Sharp captured by the LRO
section of Rima Sharp captured by the LRO

The moon didn’t die as early as we thought

Samples from China’s lunar lander could change everything we know about the moon’s volcanic record.

conceptual illustration of a heart with an arrow going in on one side and a cursor coming out on the other
conceptual illustration of a heart with an arrow going in on one side and a cursor coming out on the other

Forget dating apps: Here’s how the net’s newest matchmakers help you find love

Fed up with apps, people looking for romance are finding inspiration on Twitter, TikTok—and even email newsletters.

ASML machine
ASML machine

Inside the machine that saved Moore’s Law

The Dutch firm ASML spent $9 billion and 17 years developing a way to keep making denser computer chips.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.