Skip to Content

This Paralyzed Man Is Using a Neuroprosthetic to Move His Arm for the First Time in Years

To reverse paralysis, scientists wired a man’s brain to his muscles using electronics.
March 28, 2017

William Kochevar of Cleveland can slowly move his right arm and hand. No big deal—except that the 56-year-old had been paralyzed from the shoulders down since a bicycling accident ten years ago.

The setup that is allowing Kochevar to move his arm again is a “neuroprosthetic” involving two tiny recording chips implanted in his motor cortex and another 36 electrodes embedded in his right arm.

Now, during visits he makes to an Ohio lab each week, signals collected in his brain are being captured and sent to his arm so he can make some simple voluntary movements. “I was completely amazed,” says Kochevar.

With scientists looking on and monitoring banks of electronics, he was eventually able to drink out of a coffee cup and feed himself mashed potatoes, although he needs to rest his arm on a mechanized harness to do so. “The biggest thing that I can’t do is move my arm up and down by myself,” he says.

Researchers have previously equipped lab animals and a dozen or so people with brain implants to let them control computer cursors or robotic arms directly with their thoughts. The new work shows how researchers are attempting a next step by merging brain-computer interfaces with functional electronical stimulation, or shocking muscles in the limbs so that they contract and cause movements.

“What we are doing is circumventing the spinal cord injury,” says Bolu Ajiboye, the biomedical engineer at Case Western Reserve University who led the experiment, which is being reported today in The Lancet.

Last year, another team reported using a brain implant to restore partial hand movement to a different subject.

When an able-bodied person moves, the brain generates a thought or command in the form of electrical impulses. Those normally travel out though the spinal cord and to the limbs. In a person with a major spinal cord injury, like Kochevar has, that pathway is blocked.

To try to get around the injury, Ajiboye is using the two chips implanted in Kochevar’s brain to measure how neurons fire when he thinks about moving. The signals, processed by a mathematical algorithm, are then transmitted to the electrodes in Kochevar’s upper and lower arm. The study is part of a pilot trial by scientists at Case Western Reserve University and the Cleveland Functional Electrical Stimulation Center.

“At first I had to think really hard to get it to do stuff,” says Kochevar. “I’m still thinking about it, but I’m not recognizing that I’m thinking about it.”

Kochevar’s arm movements remain very limited and slow. Andrew Schwartz, a professor of neurobiology at the University of Pittsburgh, says scientists will need to get better at translating thoughts into the complex set of muscle activations needed for more complicated or fluid arm motions.

“The mechanics of making muscles contract in abeyance with a desired movement is a really tough problem, and I’m not sure that they have moved very far in that direction,” he says.

That's only one reason that brain interfaces are probably still many years away from being practical. Kochevar’s implants, for instance, are connected to two large pedestals that sit on top of his head, to which a computer is then connected. And the brain electrodes themselves would be expected to cease recording in one to four years, says Maryam Shanechi, a brain-computer interface researcher at the University of Southern California. Shanechi says patients might not want to take the risk to get brain implants that aren't long-lasting.

Keep Reading

Most Popular

transplant surgery
transplant surgery

The gene-edited pig heart given to a dying patient was infected with a pig virus

The first transplant of a genetically-modified pig heart into a human may have ended prematurely because of a well-known—and avoidable—risk.

open sourcing language models concept
open sourcing language models concept

Meta has built a massive new language AI—and it’s giving it away for free

Facebook’s parent company is inviting researchers to pore over and pick apart the flaws in its version of GPT-3

Muhammad bin Salman funds anti-aging research
Muhammad bin Salman funds anti-aging research

Saudi Arabia plans to spend $1 billion a year discovering treatments to slow aging

The oil kingdom fears that its population is aging at an accelerated rate and hopes to test drugs to reverse the problem. First up might be the diabetes drug metformin.

images created by Google Imagen
images created by Google Imagen

The dark secret behind those cute AI-generated animal images

Google Brain has revealed its own image-making AI, called Imagen. But don't expect to see anything that isn't wholesome.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.