Skip to Content
77 Mass Ave

Printable Electronics

New nanoscale stamping process prints electronic ink.
February 22, 2017

The next time you place your coffee order, imagine slapping a temperature-sensing sticker onto your to-go cup. Someday, the high-tech stamping that produces such a sticker might also bring us food packaging that displays a digital countdown to warn of spoiling produce, or even a windowpane that shows the day’s forecast, based on measurements of the weather conditions outside.

Engineers at MIT have invented a fast, precise stamping process that may make such electronic surfaces an inexpensive reality. In a paper published in Science Advances, the researchers report having fabricated a stamp made from carbon nanotubes that can print electronic inks onto both rigid and flexible surfaces.

A. John Hart, an associate professor in contemporary technology and mechanical engineering, says the team’s stamping process should be able to print transistors small enough to control individual pixels in high-resolution displays and touch screens. It may also offer a relatively cheap, fast way to manufacture electronic surfaces.

“There is a huge need for printing of electronic devices that are extremely inexpensive but provide simple computations and interactive functions,” Hart says. He adds that the group’s newly developed printing process “is an enabling technology for high-­performance, fully printed electronics, including transistors, optically functional surfaces, and ubiquitous sensors.”

To precisely print electronics, Hart and his team designed “nanoporous” stamps. Spongier than rubber, and about the size of a fingernail, they have patterned features that are much smaller than the width of a human hair.

To create such highly detailed stamps, the team used carbon nanotubes—strong, microscopic sheets of carbon atoms, arranged in cylinders. The researchers used the group’s previously developed techniques to grow the nanotubes on a surface of silicon in carefully controlled patterns, including honeycomb-like hexagons and flower-shaped designs. Then they infused the stamp with a small volume of electronic ink containing semiconducting nanoparticles such as silver, zinc oxide, or quantum dots.

The researchers built a printing machine with a motorized spool, around which flexible substrates can be wound. They fixed each stamp onto a spring-mounted platform to control the force used to press the stamps up onto the substrate as the spool spins over the platform.

Testing revealed that the printed patterns had enough electrical conductivity to serve, for example, as high-­performance transparent electrodes. Hart and his team now plan to pursue the possibility of printed electronics.

Keep Reading

Most Popular

open sourcing language models concept
open sourcing language models concept

Meta has built a massive new language AI—and it’s giving it away for free

Facebook’s parent company is inviting researchers to pore over and pick apart the flaws in its version of GPT-3

transplant surgery
transplant surgery

The gene-edited pig heart given to a dying patient was infected with a pig virus

The first transplant of a genetically-modified pig heart into a human may have ended prematurely because of a well-known—and avoidable—risk.

Muhammad bin Salman funds anti-aging research
Muhammad bin Salman funds anti-aging research

Saudi Arabia plans to spend $1 billion a year discovering treatments to slow aging

The oil kingdom fears that its population is aging at an accelerated rate and hopes to test drugs to reverse the problem. First up might be the diabetes drug metformin.

Yann LeCun
Yann LeCun

Yann LeCun has a bold new vision for the future of AI

One of the godfathers of deep learning pulls together old ideas to sketch out a fresh path for AI, but raises as many questions as he answers.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.