Skip to Content


Modeling Reality: Putting Systems Engineering Theory into Practice.

An online-only MIT certificate course explores the role of model-based systems engineering in today’s work environment.
February 16, 2017

Provided byMIT Architecture and Systems Engineering

As a tool for diagramming and understanding complex processes, Model-Based Systems Engineering (MBSE) is a powerful engine for growth. It’s endlessly adaptable to human needs and technological trends, unlocking incredible potential for analysis, and helping solve tomorrow’s grand engineering challenges.

At least, that’s the theory.

In practice, adapting lofty MBSE principles to real-world conditions can be challenging. Over the last fifty years, models have become dramatically more complex, adding more functions, non-linear interactions and emergent properties with every iteration. What’s more, systems failures remind us that for all its promise, MBSE is an inherently human endeavor – imperfect, yet filled with promise.

Architecture and Systems Engineering

  • This four-course online certificate program begins March 20, 2017.

    Register today!

The friction between MBSE theory and practice is one of the core themes explored by MIT’s Architecture and Systems Engineering Professional Certificate Program , a four-course online series led by Dr. Bruce Cameron.

“Our aim is to put theoretical ideas alongside real-world examples – from companies like Boeing, GM and GE,” says Cameron, who serves as director of MIT’s System Architecture Lab. “You can see examples of MBSE being used to drive business outcomes across many different fields.”

Consider BMW. Optimizing its suspension systems used to mean physically swapping out individual springs, dampers and chassis components, and hoping for the best. But with MBSE, the company was able to create a new, predictive model of its vehicles that virtualized each suspension component – and simulated their effects on ride quality. This allowed for extensive iteration and experimentation without costly early-run manufacturing and time-consuming physical testing.

Early-stage MBSE benefits like these are well established: Low-risk exploration of new design ideas, and simpler collaboration based on common understanding. The long-term indicators have been just as encouraging. In many cases, MBSE has not only enabled next-generation traceability, but has become a powerful tool for validation, verification and testing.

The power to manage change is another key topic explored in the MIT series. And it’s one many students find to be vital.

“For my client base, time is the most valuable asset they have. More than money,” explains Michael Fletcher, president of Fletcher Martin Corporation, who is on track to  finish the first run of this certificate program in March. “When you have a project that's squished into 20 weeks from planning to final completion and there’s a change, a ripple effect happens. Finding ways to minimize that ripple effect and conserve time and money is invaluable.”

While benefits like maximizing time efficiency and lowering production costs can be a siren call to aspiring MBSE practitioners, Cameron stresses the importance of critical thinking when using models in real-world situations. Antoine Vernon, a system engineer for a large energy company who is also on track to receive his certificate, agrees. “I've learned to be more critical of the models I’m using. Sometimes it’s best to say, ‘We do not know and we cannot tell,’ which is a difficult thing to admit as a professional.”

The origins of MBSE can be traced back to work done at Bell Telephone Laboratories and the US Department of Defense during the 1940s. As the discipline has evolved, it has been adapted by numerous large organizations. However, many participants in this program find the principles applicable to organizations of any size. “I may not be able to deploy MBSE at the scale of some of the examples seen in the class, but I think by modularizing and reusing parts of larger models, the main concepts can be applied in ways that are very useful,” says recent participant Lydia Lostan, a program manager at a large energy company.

With the first offering of the course series almost completed, Dr. Cameron and his team are working to optimize the classes for the next term starting on March 20, 2017. In the meantime, many of his students look forward to putting their classroom training into practice.

Fletcher is one. “It really built a structured way of thinking that I didn't have before, and brought up a whole new set of ideas,” he says. “I can't wait to get some models built.”

Learn more and register for the Architecture and Systems Engineering certificate program.

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

The problem with plug-in hybrids? Their drivers.

Plug-in hybrids are often sold as a transition to EVs, but new data from Europe shows we’re still underestimating the emissions they produce.

How scientists traced a mysterious covid case back to six toilets

When wastewater surveillance turns into a hunt for a single infected individual, the ethics get tricky.

Google DeepMind’s new generative model makes Super Mario–like games from scratch

Genie learns how to control games by watching hours and hours of video. It could help train next-gen robots too.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at with a list of newsletters you’d like to receive.