Skip to Content

Prediction Models Gone Wild: Why Election Forecasts and Polls Were So Wrong

The polls had Clinton ahead, the real-time data said she’d walk it—here’s what they missed.
November 9, 2016

If you tuned in to Vice News Tuesday afternoon or checked out election coverage on Slate, you’d have thought Hillary Clinton was all but assured of becoming America’s first female president.

In a first, both outlets were carrying real-time data streaming in from a startup called VoteCastr, which bills itself as giving America an unprecedented glimpse of “the game as it unfolds.” VoteCastr’s last predictions, made around 9 p.m. Tuesday evening, had Clinton up in Pennsylvania, Ohio, Florida, Wisconsin, and Iowa—all of which Donald Trump ended up winning on his way to becoming president-elect.

To be sure, VoteCastr wasn’t alone. Many election forecasts based on polling, demographics, and historical data, were similarly wide of the mark. The New York Times’ Upshot model, for example, gave Clinton around an 85 percent chance of winning, while the vaunted data-driven forecasting site FiveThirtyEight gave her a 72 percent chance.

This is at least partly explained by the fact that the polls the forecasts were based on were either way off or at least were making the most of their margin of error (though if Clinton ends up winning the popular vote, as it looks like she might, you could argue that the polls got it right—they just picked the wrong winner). An underappreciation of how powerful white, working-class voters are in this country may have also contributed, as could people simply not giving honest responses when asked who they supported. This is something that the Clinton campaign, which figured her Midwest “firewall” of states were all safe, got wrong. The data team working with the Trump campaign gave him a one-in-five chance of winning.

But VoteCastr’s failure—to say nothing of its rickety technical performance throughout election day—is unique because of the claims it made. The company, which has data gurus on staff who worked on the George W. Bush and Obama campaigns, gave the impression that by paying ultra-close attention to early voting results, voters’ identities, and exit polling they could somehow derive a real-time look at the election that wasn’t available before. It was meant to be the new cutting edge in data-driven election products.

Instead, it showed itself to be a flawed, incomplete means of election-tracking—a lot like the other products out there, as it turns out.

(Read more: Politico, FiveThirtyEight, The New York Times, Bloomberg)

Keep Reading

Most Popular

mouse engineered to grow human hair
mouse engineered to grow human hair

Going bald? Lab-grown hair cells could be on the way

These biotech companies are reprogramming cells to treat baldness, but it’s still early days.

Death and Jeff Bezos
Death and Jeff Bezos

Meet Altos Labs, Silicon Valley’s latest wild bet on living forever

Funders of a deep-pocketed new "rejuvenation" startup are said to include Jeff Bezos and Yuri Milner.

ai learning to multitask concept
ai learning to multitask concept

Meta’s new learning algorithm can teach AI to multi-task

The single technique for teaching neural networks multiple skills is a step towards general-purpose AI.

conceptual illustration showing various women's faces being scanned
conceptual illustration showing various women's faces being scanned

A horrifying new AI app swaps women into porn videos with a click

Deepfake researchers have long feared the day this would arrive.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.