Skip to Content

Five Lessons from AlphaGo’s Historic Victory

As Google’s computer crushed one of humanity’s best Go players, we learned a lot about the software’s inner workings, and what it means for AI.
March 18, 2016

AlphaGo handily beat 18-time world Go champion Lee Sedol 4-1, and in doing so taught us several interesting lessons about where AI research is today, and where it is headed.

There’s life in old AI approaches

One fascinating thing about AlphaGo is the unusual way it was designed. The software combined deep learning—the hottest AI technique out there today—with a much older, and far less fashionable, approach. Deep learning involves using very large simulated neural networks, and usually it eschews logic or symbol manipulation of the kind pioneered by the likes of Marvin Minksy and John McCarthy. But AlphaGo combines deep learning with something called tree-search, a technique invented by one of Minksy’s contemporaries and colleagues, Claude Shannon. Perhaps, then, we will increasingly see the connectionist and symbolic AI coming together in the future.

Polanyi’s paradox isn’t a problem

The game of Go, in which players try to surround and capture each other’s pieces across a large board, is a neat example of Polanyi’s famous paradox: “We know more than we can tell.”

Unlike with chess, there aren’t straightforward guidelines for playing the game or measuring progress, which is one reason why Go has historically been so difficult for computers to play. Machine learning, where a computer isn’t programmed (in the conventional sense) but rather generates its own algorithm for learning from examples, offers a way for computers to navigate Polanyi’s paradox. Plenty of things we do, like driving a car or recognizing a face, are similar. Some economists have highlighted this as an important point. And, as an article in the New York Times shows, some even see AlphaGo’s triumph as compelling evidence that computers will take over more tasks (and jobs) as machine learning is used ever more widely.

AlphaGo isn’t really AI

Not so fast, though. Amazing as AlphaGo is, it’s still a long way from truly intelligent. As AI expert and robotics entrepreneur Jean-Christophe Baillie points out, real intelligence will require not just more sophisticated learning but things like embodiment and the ability to communicate. Indeed, driving a car on a busy city street or interacting with someone you recognize is a lot more complex than we might realize. So while machine learning might let computers take on more tasks, it’s going to be a long time before they can replace everything people do.

AlphaGo is pretty inefficient

Compared with a human, AlphaGo learns quickly, consuming data on previous games and playing against itself at silicon speed. But it’s much less efficient than a person at learning, in that it requires far more examples of Go games in order to pick up effective techniques. This is one of the key problems with deep learning, which many people are trying to solve, by finding ways to learn from either from new kinds of data or from less data altogether.

Commercialization isn’t obvious

The skills demonstrated by AlphaGo—subtle pattern recognition, planning, and decision making—are obviously important. But it’s less obvious how they might be turned into a commercially viable product. Demis Hassabis, the founder of Google DeepMind, has said that the techniques developed for AlphaGo could be used to build a personal assistant that learns its master’s preferences and habits more effectively. But human language is a lot more complex than a board game, and a lot harder to learn from. In other words, it might be tricky to apply AlphaGo’s specific skill set in the messy real world.

(Read more: New York Times, IEEE Spectrum, Nature, “The Missing Link of Artificial Intelligence,” “Can this Man Make AI More Human?“)

Keep Reading

Most Popular

still from Embodied Intelligence video
still from Embodied Intelligence video

These weird virtual creatures evolve their bodies to solve problems

They show how intelligence and body plans are closely linked—and could unlock AI for robots.

pig kidney transplant surgery
pig kidney transplant surgery

Surgeons have successfully tested a pig’s kidney in a human patient

The test, in a brain-dead patient, was very short but represents a milestone in the long quest to use animal organs in human transplants.

panpsychism concept
panpsychism concept

Is everything in the world a little bit conscious?

The idea that consciousness is widespread is attractive to many for intellectual and, perhaps, also emotional
reasons. But can it be tested? Surprisingly, perhaps it can.

We reviewed three at-home covid tests. The results were mixed.

Over-the-counter coronavirus tests are finally available in the US. Some are more accurate and easier to use than others.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.