Skip to Content

This Uncrushable Robot Cockroach Just Wants to Rescue You

Inspired by roaches’ ability to squeeze into tiny spaces, this new critter is part of a rising trend of building robots that are soft and malleable.
February 8, 2016

If you were trapped beneath a pile of rubble, a large robotic cockroach might be the last thing you'd hope to see scrabbling toward you. However, two researchers at the University of California, Berkeley, seem to think that such a contraption could be the ideal way to reach survivors buried under debris.

Robert Full, a professor at Berkeley, and one of his graduate students, Kaushik Jayaram, took inspiration from the remarkably squishable and resilient cockroach to develop a robot version with an exoskeleton that allows it be compressed to less than half its height in order to wriggle through confined spaces.

In a paper published today in the Proceedings of the National Academy of Sciences, Full and Jayaram show how a cockroach is able to squeeze its body into tight spaces and still keep moving, thanks to an exoskeleton made of soft materials. They conducted a series of experiments that involved compressing real cockroaches and observing the forces placed on them.

The robot walking normally.

The researchers then built a device, which Full and Jayaram call a compressible robot with articulated mechanisms (CRAM), from several folding exoskeleton-like plates. They speculate that its malleability and strength could make it ideal for exploring collapsed buildings.

The robot's shell and flexible spine allow it to crawl when compressed to half its normal height.

It’s a cool experiment that also points to a significant and newish trend in robotics. Many researchers and a few companies are becoming interested in soft or malleable robot designs for the various physical advantages they can offer.

Firms including Soft Robotics and Empire Robotics already sell soft grippers designed to make it easier for robots to manipulate objects without requiring extreme precision. Exoskeletons might offer another way to make robots that can change shape while still retaining their strength.

So next time you try in vain to crush a cockroach beneath your shoe, perhaps take a moment to marvel at its incredible design, and consider its potential applications.

(Sources: PNAS, Scientific American)

Keep Reading

Most Popular

still from Embodied Intelligence video
still from Embodied Intelligence video

These weird virtual creatures evolve their bodies to solve problems

They show how intelligence and body plans are closely linked—and could unlock AI for robots.

pig kidney transplant surgery
pig kidney transplant surgery

Surgeons have successfully tested a pig’s kidney in a human patient

The test, in a brain-dead patient, was very short but represents a milestone in the long quest to use animal organs in human transplants.

panpsychism concept
panpsychism concept

Is everything in the world a little bit conscious?

The idea that consciousness is widespread is attractive to many for intellectual and, perhaps, also emotional
reasons. But can it be tested? Surprisingly, perhaps it can.

We reviewed three at-home covid tests. The results were mixed.

Over-the-counter coronavirus tests are finally available in the US. Some are more accurate and easier to use than others.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.