Skip to Content

Gorgeous New 4-D Printing Process Makes More Than Just Eye Candy

A new technique for making “programmable” materials could lead to all sorts of medical and electronic devices.
January 26, 2016

If you are tired of the hype around 3-D printing, brace yourself, because it’s time to add another “D.” Yesterday, researchers unveiled a new process they can use to “4-D print” flat objects that change into complex shapes when they are immersed in water.

The new demonstration builds on the microscale printing process developed under the leadership of Jennifer Lewis, a materials scientist at Harvard. The images are captivating, but they aren’t just pretty pictures; they also hint at a fundamental new capability that could be applied in useful ways.

This is not the first time we’ve heard about 4-D printing, which refers to printing things that are “programmed” to change shapes later on. Three years ago Skylar Tibbits, a research scientist in MIT’s architecture department, introduced the term at the TED Conference. Tibbits’s process employed two materials, a rigid one and a softer one that expands when put in water.

Lewis and her colleagues have developed a simpler process based on a single new material, a composite made of a gel-like substance combined with tiny fibers of cellulose. The stiffness of these fibers, and the degree to which they swell in water, varies depending on how they are aligned. The researchers exploit that to “encode” the ability to change into a complex, prescribed shape. Lewis says it should be possible to use the new process, with a different hydrogel ink, to make objects that change shape in response to other stimuli, like light. The cellulose fibers could also be switched out for conductive materials to make electronic devices, she says.

This general approach might prove useful for tissue engineering. But let’s not get carried away—this in itself brings us no closer to “replacement organs.” A big challenge is developing 3-D scaffolds for growing new cells and tissues to help in making tissue repairs. Lewis says the group is already exploring this in the lab, by growing cells on flat structures and then triggering shape changes later on, for example by placing them in a wound site.

(Sources: Harvard, New Scientist)

Keep Reading

Most Popular

The miracle molecule that could treat brain injuries and boost your fading memory

Discovered more than a decade ago, a remarkable compound shows promise in treating everything from Alzheimer’s to brain injuries—and it just might improve your cognitive abilities.

wet market selling fish
wet market selling fish

This scientist now believes covid started in Wuhan’s wet market. Here’s why.

How a veteran virologist found fresh evidence to back up the theory that covid jumped from animals to humans in a notorious Chinese market—rather than emerged from a lab leak.

Conceptual illustration showing a file folder with the China flag and various papers flying out of it
Conceptual illustration showing a file folder with the China flag and various papers flying out of it

The US crackdown on Chinese economic espionage is a mess. We have the data to show it.

The US government’s China Initiative sought to protect national security. In the most comprehensive analysis of cases to date, MIT Technology Review reveals how far it has strayed from its goals.

conceptual illustration showing various women's faces being scanned
conceptual illustration showing various women's faces being scanned

A horrifying new AI app swaps women into porn videos with a click

Deepfake researchers have long feared the day this would arrive.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.