Skip to Content

VCs Try to Find Answers in Algorithms

Already influential on Wall Street, algorithmic investing has begun to make inroads in Silicon Valley.
November 23, 2015

Correlation Ventures and WR Hambrecht Ventures, both small to midsize firms, started using algorithms to guide investing about seven years ago. Hambrecht, a boutique firm in San Francisco that’s currently raising its fourth fund, uses algorithms as a second screen once companies have made it through initial vetting and are being considered for investment.

Managing director and data scientist Thomas Thurston takes each startup’s pitch deck and runs it through his algorithm, which draws on both proprietary and public data sources.

Companies the algorithm rates highly will usually get an investment, though humans make the final call. Thurston says the algorithm so far has a 66 percent hit rate, including a 2010 investment in Tango, a mobile messaging service that has since raised $367 million and is valued at more than $2 billion. “It wasn’t on anybody’s radar, but it scored really, really high,” he says.

David R. Coats, managing director at Correlation, says it took the firm three years to get a usable algorithm, which it now employs when deciding whether to join other investors in a deal.

These systems have blind spots. Hambrecht’s can’t yet predict, for example, whether people will buy a startup’s product. “We’re still wrong a third of the time, so it’s not magic,” Thurston says. But it is far better than the 20 to 30 percent success rate for most business startups, he says.

Thurston, who also runs an algorithmic prediction company called Growth Science, says that most VCs “hated the idea of this” back when he started. “There wasn’t even a word for big data,” he says. “A lot of this was alien weirdo stuff to most investment managers.”

Now there are other believers in the venture funding world. Among them: Bloomberg Beta, Correlation Ventures, Mattermark, the Compass Startup Project (which gives startups and their investors a dashboard to benchmark their performance against other startups), and the Startup Genome Project, a nonprofit that gathers data about cities and regions as incubators of startups. Bloomberg Beta uses analytics to identify people likely to start successful companies in the future. The Hong Kong firm Deep Knowledge Ventures has even taken the gimmicky step of putting its algorithm on its board of directors. And some top-tier VCs have begun hiring data scientists.

“I don’t know if [algorithmic investing] is going to take over like it has on Wall Street,” Thurston says. “But it’s absolutely going to find its way into every single major [venture] fund.”

Keep Reading

Most Popular

open sourcing language models concept
open sourcing language models concept

Meta has built a massive new language AI—and it’s giving it away for free

Facebook’s parent company is inviting researchers to pore over and pick apart the flaws in its version of GPT-3

transplant surgery
transplant surgery

The gene-edited pig heart given to a dying patient was infected with a pig virus

The first transplant of a genetically-modified pig heart into a human may have ended prematurely because of a well-known—and avoidable—risk.

Muhammad bin Salman funds anti-aging research
Muhammad bin Salman funds anti-aging research

Saudi Arabia plans to spend $1 billion a year discovering treatments to slow aging

The oil kingdom fears that its population is aging at an accelerated rate and hopes to test drugs to reverse the problem. First up might be the diabetes drug metformin.

Yann LeCun
Yann LeCun

Yann LeCun has a bold new vision for the future of AI

One of the godfathers of deep learning pulls together old ideas to sketch out a fresh path for AI, but raises as many questions as he answers.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.