Skip to Content

A Robotic Tabletop Makes Simple Structures All by Itself

A surface that manipulates objects using mechanically controlled pins can put simple structures together.
November 18, 2015

A robotic table that’s capable of manipulating objects placed on its surface may inspire new types of telepresence interfaces, as well as new approaches to manufacturing.

A user moves a ball around a robotic table using a controller block.

The device was developed by Sean Follmer and colleagues at the MIT Media Lab. Its surface is made up of the tops of an array of square pins, each roughly a centimeter wide. These pins are powered by a small motor and move up and down, under the control of a computer, pushing objects around on the table.

A recent experiment, conducted by Philipp Schoessler, a student at the Media Lab, shows how the table can manipulate several specially designed blocks. Activating the pins at the correct speed can cause the blocks to flip over, or even to hop on top of one another, building a simple structure. To build more complex structures, the researchers used a 3-D printer to make blocks with magnetized connectors on each side, allowing them to lock together.

The researchers also developed “kinematic blocks” with buttons or knobs on top that could be used to manipulate the pins beneath—a user could then control the movements of another block by pressing the button or turning the knob on a control block. The work was presented early this month at the ACM Symposium on User Interface Software and Technology.

Follmer, now an assistant professor at Stanford University, says the approach could prove useful as part of an industrial production line.

“We’re thinking about a much more advanced assembly line where you could move things,” Follmer says. “What would be interesting would be a kind of conveyor belt where you can manipulate things directly but also in conjunction with other robotic arms.”

Some companies are, in fact, already showing an interest in such technology for manufacturing. Festo, a German company that makes manufacturing equipment, has demonstrated a system capable of maneuvering different objects in multiple directions at once. The technology, which the company calls Wave Handling, consists of a conveyor with an array of electronically controlled bellows beneath. As these bellows are inflated, the portion of the conveyor above pushes upward. The approach can be used to move objects in different directions around the conveyor.

Follmer says more complex physical interfaces of this kind will be enabled by cheaper robotic hardware. “We’re seeing this real shift in robots becoming cheaper and faster, and having many, many more of them in the consumer and industrial market,” he says. “That’s going to decrease the cost of many of these things.”

Follmer and colleagues previously showed how their table could be combined with a video screen to enable a form of telepresence that lets a user manipulate objects remotely.

Keep Reading

Most Popular

This new data poisoning tool lets artists fight back against generative AI

The tool, called Nightshade, messes up training data in ways that could cause serious damage to image-generating AI models. 

Rogue superintelligence and merging with machines: Inside the mind of OpenAI’s chief scientist

An exclusive conversation with Ilya Sutskever on his fears for the future of AI and why they’ve made him change the focus of his life’s work.

The Biggest Questions: What is death?

New neuroscience is challenging our understanding of the dying process—bringing opportunities for the living.

How to fix the internet

If we want online discourse to improve, we need to move beyond the big platforms.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at with a list of newsletters you’d like to receive.