Skip to Content
77 Mass Ave

MIT Cheetah Robot Unleashed

New algorithm lets robot bound across grassy terrain.
December 18, 2014

Speed and agility are hallmarks of the cheetah: the big predator is the fastest land animal on earth, able to accelerate to 60 miles per hour in just a few seconds. As it ramps up to top speed, a cheetah pumps its legs in tandem, bounding until it reaches a full gallop.

MIT Cheetah Robot

Now MIT researchers have captured that gait in an algorithm that they’ve successfully implemented in a robotic cheetah—a sleek, four-legged assemblage of gears, batteries, and electric motors that weighs about as much as its feline counterpart. The team recently took the robot for a test run on MIT’s Killian Court, where it bounded across the grass at a steady clip.

In experiments on an indoor track, the robot sprinted at up to 10 miles per hour and continued to run after clearing a hurdle. The MIT researchers estimate that the current version of the robot may eventually reach speeds of up to 30 miles per hour.

The key to the bounding algorithm is in programming each of the robot’s legs to exert a certain amount of force in the split second during which it hits the ground: in general, the faster the desired speed, the more force must be applied to propel the robot forward. Sangbae Kim, an associate professor of mechanical engineering, hypothesizes that this force-control approach to robotic running is similar, in principle, to the way world-class sprinters race.

“Many sprinters, like Usain Bolt, don’t cycle their legs really fast,” Kim says. “They actually increase their stride length by pushing downward harder and increasing their ground force, so they can fly more while keeping the same frequency.”

Kim says that the force-based approach enables the cheetah-bot to handle rougher terrain, such as a grassy field. In treadmill experiments, the robot coped well with slight bumps in its path, maintaining its speed even as it ran over a foam obstacle.

“Most robots are sluggish and heavy, and thus they cannot control force in high-speed situations,” Kim says. “That’s what makes the MIT cheetah so special: you can actually control the force profile for a very short period of time, followed by a hefty impact with the ground, which makes it more stable, agile, and dynamic.”

Kim and his colleagues presented details of the bounding algorithm at the IEEE/RSJ International Conference on Intelligent Robots and Systems in Chicago.

Keep Reading

Most Popular

2021 tech fails concept
2021 tech fails concept

The worst technology of 2021

Face filters, billionaires in space, and home-buying algorithms that overpay all made our annual list of technology gone wrong.

conceptual illustration showing various women's faces being scanned
conceptual illustration showing various women's faces being scanned

A horrifying new AI app swaps women into porn videos with a click

Deepfake researchers have long feared the day this would arrive.

Death and Jeff Bezos
Death and Jeff Bezos

Meet Altos Labs, Silicon Valley’s latest wild bet on living forever

Funders of a deep-pocketed new "rejuvenation" startup are said to include Jeff Bezos and Yuri Milner.

surgery
surgery

A gene-edited pig’s heart has been transplanted into a human for the first time

The procedure is a one-off, and highly experimental, but the technique could help reduce transplant waiting lists in the future.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.