Skip to Content
77 Mass Ave

When the Bond Breaks

MIT research reveals how bonded materials lose their grip.

Materials that are firmly bonded together with epoxy or other tough adhesives are ubiquitous in modern life—from crowns on teeth to modern composites used in construction. Yet it has proved remarkably difficult to study how these bonds fracture and fail, and how to make them more resistant to such failures.

Bonded layers of chromium and epoxy come apart when exposed to moisture.

Now MIT researchers led by Oral Buyukozturk and Markus Buehler, professors of civil and environmental engineering, have found a way to study these bonding failures directly, revealing the crucial role of moisture. Their findings were published this year in Proceedings of the National Academy of Sciences.

A composite material “may be made of a strong and durable material bonded to another strong and durable material,” Buyukozturk says, “but where you bond them doesn’t necessarily have to be strong and durable.”

There are standard methods for testing the strength of materials and investigating how they may fail structurally, but bonded surfaces are more difficult to model. “When we are concerned with deterioration of this interface when it is degraded by moisture, classical methods can’t handle that,” Buyukozturk says. “The way to approach it is to look at the molecular level.”

When such systems are exposed to moisture, “it initiates new molecules at the interface,” he says, “and that interferes with the bonding mechanism.” To assess how weak the interface becomes when it is affected by environmental exposure, the team used a combination of molecular simulations and laboratory tests. In the lab tests, Buyukozturk and his colleagues controlled the residual stresses in a metal layer that was bonded and then forcibly removed. “We validated the method, and showed that moisture has a degrading effect,” he says.

The findings could lead to new ways of preventing moisture from reaching into the bonded layer, perhaps using better sealants. This could prove useful for mechanical devices and aircraft as well as in biomedicine and construction. “Moisture is the number one enemy,” Buyukozturk says.

“I think this is going to be an important step toward assessment of the bonding, and enable us to design more durable composites,” he adds. “It gives a quantitative knowledge of the interface.”

Keep Reading

Most Popular

A Roomba recorded a woman on the toilet. How did screenshots end up on Facebook?

Robot vacuum companies say your images are safe, but a sprawling global supply chain for data from our devices creates risk.

A startup says it’s begun releasing particles into the atmosphere, in an effort to tweak the climate

Make Sunsets is already attempting to earn revenue for geoengineering, a move likely to provoke widespread criticism.

10 Breakthrough Technologies 2023

Every year, we pick the 10 technologies that matter the most right now. We look for advances that will have a big impact on our lives and break down why they matter.

These exclusive satellite images show that Saudi Arabia’s sci-fi megacity is well underway

Weirdly, any recent work on The Line doesn’t show up on Google Maps. But we got the images anyway.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.