Thermoelectric Material to Hit Market Later This Year
California-based Alphabet Energy plans to begin selling a new type of material that can turn heat into electricity. Unlike previous thermoelectrics, as such materials are known, it is abundant, cheap, and nontoxic.
Thermoelectric materials can turn a temperature difference into electricity by exploiting the flow of electrons from a warmer area to a cooler one. Thus, they can theoretically turn waste heat into a power source. But an efficient thermoelectric material has to conduct electricity well without conducting heat well, because otherwise the temperature across the material would soon equalize. Most materials that are good electrical conductors are also good thermal conductors, and the few materials researchers have been able to develop with good thermoelectric properties have been rare, expensive, or toxic. Alphabet Energy’s solution is tetrahedrite: an abundant, naturally occurring mineral that also happens to be more efficient on average than existing thermoelectric materials.
Ali Shakouri, a professor of electrical and computer engineering at Purdue University, says that tetrahedrite has promise because it doesn’t require the expensive up-front manufacturing that other materials require. “I think that’s kind of quite unique in thermoelectrics,” Shakouri says. “People look at so many materials, but the starting point has always been pure materials that they synthesize together.”
The fact that it’s abundant is another big plus, says MIT professor Mildred Dresselhaus. Other materials are made from elements so rare that they wouldn’t be available for widespread use.
According to data released by Alphabet Energy, tetrahedrite costs about $4 per kilogram, whereas other thermoelectric materials cost between $24 and $146 per kilogram. For now, the company is focusing on stand-alone generators, but founder and CEO Matt Scullin says it’s currently working with car companies to see if tetrahedrite can be used to harness heat from car exhaust.
Scullin says that other thermoelectric materials have typically achieved about 2.5 percent efficiency in cars, but tetrahedrite could reach 5 to 10 percent efficiency. “These aren’t incremental improvements,” he says. “They’re really huge improvements that make really significant impact.”
Keep Reading
Most Popular
A Roomba recorded a woman on the toilet. How did screenshots end up on Facebook?
Robot vacuum companies say your images are safe, but a sprawling global supply chain for data from our devices creates risk.
A startup says it’s begun releasing particles into the atmosphere, in an effort to tweak the climate
Make Sunsets is already attempting to earn revenue for geoengineering, a move likely to provoke widespread criticism.
10 Breakthrough Technologies 2023
These exclusive satellite images show that Saudi Arabia’s sci-fi megacity is well underway
Weirdly, any recent work on The Line doesn’t show up on Google Maps. But we got the images anyway.
Stay connected
Get the latest updates from
MIT Technology Review
Discover special offers, top stories, upcoming events, and more.